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1 Introduction

One characteristic of an insurance product is the default risk of its seller. Sellers can influence
their own default risk through precautionary measures to ensure solvency. At the same
time, sellers compete for clients, and the competition may create incentives to maintain low
default risks – a relevant consideration for market stability. Consider, as a large market for
risk transfer, the over-the-counter (OTC) derivatives market. Counterparty default risk is a
major concern therein, especially given its role in the instabilities during the Global Financial
Crisis (Duffie, 2019). This market is highly concentrated, with few large banks at the core
selling derivatives to numerous heterogeneous clients. However, little is known about how
oligopolistic competition in insurance markets affects insurers’ choices of default risk.

This paper introduces insurer default risk as a quality dimension of the insurance product
in a basic insurance model. Insurers sequentially choose their default risks while competing
for risk-averse clients. Although all clients prefer lower default risk, their willingness to pay
varies due to different levels of risk aversion. I investigate whether market discipline in the
choice of default risk emerges in the resulting model of vertical product differentiation.

I find that this is the case when risk aversion is sufficiently relevant. The insurer with the
lower default risk has larger profits, incentivizing the first mover in the choice of default risk
to choose a low default risk. The second mover then follows with a (potentially small) default
risk gap. I discuss implications of endogenous market discipline in the model for introducing
central clearing in derivatives markets whereby sellers are shielded from competition in default
risk.

In the model, two insurers offer insurance contracts to clients seeking to hedge against a
common macro risk. The insurance contracts feature full coverage, except when the insurer
defaults. Insurers choose their default risk by deciding on measures to ensure their solvency,
e.g., setting aside capital or having balanced trading books. As a result, an insurance prod-
uct is characterized by the price and its seller’s default risk. Clients have CARA utility with
varying levels of absolute risk aversion. Competition occurs in two stages: insurers sequen-
tially choose their publicly observable default risks before engaging in simultaneous price
competition.
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The main results of the model are as follows, presented following backward induction
through the stages of the model.

First, in stage three, when clients make their purchase decisions, there is self-selection.
All clients prefer a low default risk to a high default risk, but their willingness to pay for low
default risks varies due to differences in risk aversion. As a result, there is an indifferent client
that segments the market with more risk-averse clients self-selecting to buy from the insurer
with the lower default risk. This market segmentation hinges on differentiated default risks.
Insurers make positive profits.

Second, in stage two, when prices are set, for every pair of default risks, a unique pair of
prices exists that forms a subgame-perfect Nash equilibrium. The price equilibrium is such
that the insurer with the higher default risk chooses a lower price.

Third, price equilibria and, subsequently, profits depend only on a function in default
risks that is close to a function in the difference in default risks. I call the difference in default
risks the default risk gap.

Fourth, in equilibrium, the insurer with the lower default risk (i.e., that offers the insur-
ance product of higher quality) has larger profits than the other insurer. This renders the
leadership position in quality more attractive.

This has two key implications for the first stage of the game, when default risks are
sequentially chosen. First, the first mover is under pressure to choose a low default risk:
Since the insurer with the lower default risk has larger profits, the first mover aims to occupy
this position vis-à-vis the second mover. As a result, he chooses a sufficiently low default risk
to exclude the possibility that the second mover reverses roles. In particular, the smallest
optimal default risk gap approximately determines an upper bound for the default risk of the
first mover. In general, the default risk of the first mover may not exceed roughly half of the
worst (externally given) admissible default risk since this is an upper bound for the default
risk gap.

Second, there are push-and-pull factors on the second-mover’s choice of default risk. That
is, if there is an optimal default risk gap for the second mover, the second mover will keep
this gap (relative to the first mover). Under two conditions that are simple but probably
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more restrictive than necessary, the competitive situation can be summed up based on the
default risk gap. If the profit of the second mover as a function of the second-mover’s default
risk has a unique interior maximum, and if the profit of the first mover as a function of the
second-mover’s default risk is increasing, one can fully characterize the equilibrium default
risks. Broadly speaking, the first mover will choose a default risk below a threshold lower
than the optimal default risk gap, and the default risk of the second mover will be that of
the first mover plus the optimal default risk gap.

Lastly, in a numerical example, I demonstrate that the two above conditions hold for
a plausible set of parameter values, and that the first-mover’s default risk and the default
risk gap can be small – much smaller than the admissible default risks in the model. Thus,
competitive forces alone can lead to low default risks. Since the overall outcome varies
somewhat smoothly with the parameter values, the conclusions drawn from the numerical
example extend to a neighborhood of parameter values and are, therefore, “locally generic”
for the parameters of the numerical example.

In sum, pressure to choose a low default risk for the first mover and a push-and-pull effect
on the second-mover’s choice of default risk can be seen as market discipline in the choice of
default risks.

The model captures essential features of derivatives markets and may serve as a frame-
work for exploring open questions about market structure. Derivatives can be seen as in-
surance products offered by dealers, typically large banks. Derivatives markets exhibit a
hub-and-spoke structure (Abad, Aldasoro, Aymanns, D’Errico, Rousová, Hoffmann, Lang-
field, Neychev, and Roukny, 2016), with few dealers at the core and numerous heterogeneous
clients in the periphery, which aligns with the model setup. This structure persists even
when the market is centrally cleared through a central counterparty (CCP)1, as typically
only dealers are members of the CCP, and most market participants access central clearing
as clients of these members (client clearing)2. However, interposing a CCP at the core of a
highly concentrated market raises the question of the effect of central clearing on competition.

1 A CCP replaces a contract between two of its members with two contracts that each have the CCP on
one end. It thereby insulates the contracting parties from the risk that the counterparty defaults.

2 See, e.g., Financial Stability Board (2018) and CPMI, IOSCO (2022).
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The model provides a framework to conceptualize the effects of central clearing on com-
petition. A salient feature of a centrally cleared market is that members of the CCP do
not differ in their default risks from the client’s perspective, primarily due to mechanisms
that port clients’ portfolios from one member to another in case of a default (Braithwaite
and Murphy, 2020). This reduces competition in price and default risk to competition in
prices alone. However, the model demonstrates that market discipline in choosing default risk
emerges as a result of two-dimensional competition (price and default risk). Thus, the model
highlights a market force that may be absent in centrally cleared markets where dealers are
shielded from competition in default risks.

Related Literature. This paper contributes to three strands of the literature. First,
I extend the literature on insurance markets following the seminal work by Rothschild and
Stiglitz (1976). I introduce the seller’s default risk as a quality dimension of the insurance
product. Consequently, the focus of client heterogeneity shifts: clients differ in their risk
aversion but are identical in the underlying endowment risk. A model introducing differences
in insurer service quality has been developed by Schlesinger and Von der Schulenburg (1991),
but their model centers around horizontal product differentiation and search costs.

Second, I add to the body of work on vertical product differentiation from the industrial
organization literature (Gabszewicz and Thisse, 1979, 1980; Shaked and Sutton, 1982, 1983).
In the standard model in Tirole (1988), which closely follows Shaked and Sutton (1982),
two firms compete in product quality and price. Maximal differentiation in quality choices
emerges because differentiation in quality softens price competition. I adapt this class of
models to the insurance context by mapping insurers’ default risks to (inverse) qualities
and introducing risk aversion into consumer utility. As a result, consumer utility becomes
non-linear, reversing the result of maximal differentiation: push-and-pull factors and upward
pressure on both qualities emerge, which I interpret as market discipline in quality choices.
To clarify which assumptions need to be removed from the standard linear model to produce
analogous results, I revisit the standard model in the Online Appendix.3

Third, I contribute to a growing literature on the market structure of OTC derivatives

3 Differently from Moorthy (1988, 1991), who lifts the same assumptions and numerically computes and
compares outcomes, I use a general convex cost function and derive the push factor directly from profit-
maximizing incentives.
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markets, initiated by Duffie, Gârleanu, and Pedersen (2005) and Atkeson, Eisfeldt, and Weill
(2015).4 Seminal papers on central clearing in derivatives markets have examined netting
benefits (Duffie and Zhu, 2011), transparency (Acharya and Bisin, 2014), and the role of
margins (Biais, Heider, and Hoerova, 2012, 2016, 2021). I add to this literature by focusing
on the nature of competition between the dealers at the core of the market and by introducing
the notion of differentiation in default risks. Competition between dealers is also studied in
Carapella and Monnet (2020), who investigate the effect of central clearing in derivatives
markets on dealers’ entry decisions. The idea is that if more dealers enter as a result of
the regulation, more intense competition and a resulting lower level of spreads may alter
incentives to invest in efficient technologies ex-ante. Unlike their model, where all agents
are risk-neutral, and the focus is on search frictions for dealers intermediating derivatives,
the model in this paper emphasizes clients’ risk aversion as the driving force behind dealer
competition and default risk differentiation.

The rest of the paper is organized as follows. Section 2 introduces the model framework.
Section 3 derives key results on self-selection and illustrates the setup. Section 4 shows
uniqueness and existence of price equilibria for any pair of default risks. Section 5 analyses
the choices in default risks. Section 6 presents a numerical example. Section 7 discusses an
application of the model setup to derivatives markets, and Section 8 concludes.

2 Model

2.1 Setup

There is a continuum of risk-averse clients with a hedging need and two risk-neutral insurers.

Clients. Each client has an asset x̃ which takes the value θ with probability p and θ with
probability (1 − p). Let the expected value of the asset be zero, and the bad endowment
state a loss.5 The endowment risk is the same across all clients, and p is commonly known.

4 See Dugast, Üslü, and Weill (2022) for recent work on the coexistence of OTC and centralized markets.
5 Otherwise E[x̃] is a certain payment and consider the random variable x̃ − E[x̃] instead of x̃.
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Clients are risk-averse with CARA utility6

ua(x) = − exp(−ax). (1)

Insurance Contract and Default Risk. Each insurer offers a full-coverage insurance con-
tract for a fixed payment of γ. However, insurers default with some probability in the bad
endowment state, in which case they do not honor the contractual obligations of the insur-
ance contract. Insurers choose their default risk bi, i ∈ {1, 2}, i.e., the probability that they
default in the bad endowment state.

A client with risk aversion parameter a derives the following utility from a contract (b, γ),
sold by insurer with default risk b at price γ,

Ua(b, γ) := (1 − bp)ua(−γ) + bpua(θ). (2)

As illustrated in Figure 1, the marginal rate of substitution, i.e. the necessary reduction
in the price γ for an increase in default risk b to keep a client indifferent, is increasing in a.7

More risk-averse clients have a larger willingness to pay for an increase in quality.

Figure 1: Illustration of Indifference Curves for Two Clients with a1 < a2

a2

a1

b

γ

6 The model remains unchanged with the cardinally equivalent utility va(x) = 1/a(1 − exp(−ax)).
7 One can verify that ∂MRS(a)/∂a = −p/((1−bp)a) (exp(−a(θ + γ)) [1/a + θ + γ] − 1/a) . To see that this

expression is positive, note that for (θ + γ) < −1/a it follows directly. For 0 > (θ + γ) > −1/a it follows,
since for all x ̸= 0 exp(x) > 1 + x.
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Timing. There are five points in time, t ∈ {0, 1, 2, 3, 4}. In t = 0, insurer 1 chooses
default risk b1. In t = 1, upon observing insurer 1’s default risk, insurer 2 chooses his default
risk b2. In t = 2 they simultaneously choose prices γi, i ∈ {1, 2} for a full-coverage insurance
contract.8 Upon observing the insurers’ choices (b1, γ1) and (b2, γ2), clients decide from whom
to buy in t = 3. Lastly, clients’ endowments are realized, and payments are exchanged in
t = 4 unless there is a default. Figure 2 summarizes the timing of events.

Figure 2: Timeline

t = 0 t = 1 t = 2 t = 3 t = 4

- Insurer 1 chooses
default risk b1

- b1 publicly observed

- Insurer 2 chooses
default risk b2

- b2 publicly observed

- Insurers simultaneously
choose prices γ1, γ2

- Clients’ purchase
decisions

- x̃ realizes, insurers
potentially default

- Payments exchanged

We study subgame-perfect Nash equilibria in the resulting game.

2.2 Discussion

The assumption that default risks are chosen before other actions embeds a commitment
assumption. Once chosen, a default risk cannot be modified at later points in time. This
excludes a situation in which an insurer abandons precautionary measures after they signaled
a low default risk. In the simple timing structure of the present model, commitment seems a
reasonable assumption. First, precautionary measures that insurers undertake to reduce the
probability of their own default, such as setting aside capital, sufficient liquidity buffers, or
balancedness of the trading books, are relatively long-term strategic decisions. They are here
seen as investments that are sunk costs during later phases of competition, not continued
period-per-period expenses. Second, default risks need to become public information before
clients’ purchase decisions. The disclosure of such information and the associated build-up
of reputation also takes time.

I assume that default risks are chosen sequentially, which is a simplifying assumption.
With simultaneous choice, any pure-strategy equilibrium in qualities cannot be symmetric,

8 Specifically, it is assumed that γ is the upfront premium for establishing the client-insurer relationship.
Afterward, the insurer offers the actuarily fair price, and clients subsequently pick trade volumes that
result in full insurance. Hence, the insurer’s profit per client is γ. See Appendix B1 for details.
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as equal qualities yield zero profits for insurers. Thus, with simultaneous quality choices,
there are multiple equilibria (with reversed roles). In Shaked and Sutton (1982), roles are
thus assigned upfront. In this model, roles are instead assigned via sequential quality choice
(as, e.g., in Aoki and Prusa (1997); Lehmann-Grube (1997)).

The setup implies somewhat restrictive assumptions regarding the contract terms: In-
surers are limited to offering full-coverage insurance (unless they default) and only have
discretion over the premia. The situation maps to a situation in which clients pay a fixed
premium to establish the client-insurer relationship, after which the insurer provides insur-
ance at fair prices and clients subsequently choose full insurance. The setup rules out a
situation in which insurers offer a menu of contracts that differ in coverage and thus addi-
tionally compete in coverage. I make two points in defense of this assumption. First, the
novel aspect of the model is competition in default probabilities seen as a quality dimension
of the insurance products. To keep this analysis tractable, I keep other dimensions of the
competition as simple as possible. Second, in the context of derivatives markets, which will
be discussed later, full coverage is a typical feature. For example, a plain-vanilla interest rate
swap specifies the exchange of a fixed interest rate for a floating rate without variation in
coverage.

Similarly, it is assumed that insurers are unable to discriminate among clients based on
their risk aversion. In other words, I assume that risk aversion is private information to
clients. One may debate how much information insurers are able to acquire about the risk
attitudes of their clients. In the context of derivatives markets as an over-the-counter market,
clients may additionally have a hard time comparing prices. Assuming that risk aversion is
private information, nonetheless, seems a natural starting point and one that facilitates an
analysis with respect to vertical product differentiation. In related work on vertical product
differentiation, first-degree price discrimination is ruled out.

3 Stage 3: Clients’ Purchase Decisions

The model is solved by backward induction, starting with clients’ purchase decisions in t = 3.
This section establishes that the market is segmented with more risk-averse clients buying
from the insurer with the lower default risk (Proposition 1) and derives some properties to
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graphically illustrate the setup (Figure 4).

In t = 3, insurers’ default risks are given. To fix roles, insurer 1 defaults with a lower
probability or, in other words, offers a product of higher quality. That is, let ∆b := b2−b1 > 0.
Let b⃗ := (b1, b2) and γ⃗ := (γ1, γ2) denote the pairs of default risks and prices.

Lemma 1 (Characterization of the Indifferent Client). A client with degree of risk
aversion a is indifferent between two contracts (b1, γ1) and (b2, γ2) with ∆b > 0 if

g(a, γ⃗) := exp(−a∆γ) − 1
exp(−a(θ + γ2)) − 1 = p∆b

1 − b1p
=: g̃(⃗b). (3)

Proof. See Appendix A1.

For any two contracts with b2 > b1, if there is a solution to (3), then γ1 > γ2.9 That is,
the insurer that offers the product of higher quality sets the higher price.

The main result of this section (Proposition 1) establishes that there is at most one
client characterized by some a∗ who is indifferent between contracts (b1, γ1) and (b2, γ2) and
segments the market. For the existence of a unique indifferent client, the utility loss due to the
payment of the price relative to the utility loss due to the bad endowment needs to diminish
as clients become more risk-averse. In other words, the function g needs to decrease in the
risk aversion parameter – akin to a single crossing condition. A lower bound on −a(θ + γi)
is sufficient for this, which is ensured by the following set of assumptions.10

Assumption A1.

p <
1
3 .

Assumption A2.

For i ∈ {1, 2} : bi ∈ [0, bmax] with bmax ≤ 1
3 .

9 To see this, note that with ∆b > 0, the RHS of (3) is positive. The denominator of the LHS of (3) is
positive, which necessitates ∆γ < 0.

10 From assumptions A3 and A4 we get −a(θ + γi) > 2. To see this, note that −a(θ + γi) > 2 ⇔ γmax <
2/(−a)−θ. The RHS holds, since by assumption A3 γmax < (−θ)/3 and 2/(a)−θ > (−θ)/3 ⇔ (−a)θ > 3,
which is ensured by assumption A4.
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Assumption A3.

For i ∈ {1, 2} : γi ∈ [0, γmax] with γmax ≤ 1
3(−θ).

Assumption A4.

a(−θ) > log
[

1 − 1
8

exp(−2) − 1
8

]
≈ 4.4.

The assumptions bound the probability of the bad endowment state (assumption A1)
and the default risks (assumption A2). They, thus, focus attention on a setup of insurance
against an infrequent large event as well as a setup with the default of an insurer being the
exception rather than the norm.

Regarding assumption A3, note that γmax ≤ (−θ) by construction, since otherwise the
price exceeds the bad endowment. A priori, there is no market for prices exceeding the price
above which the most risk-averse client is unwilling to buy insurance even if offered with the
lowest default risk (see Appendix B2 for details). In the numerical example, assumption A3
is non-binding in equilibrium.

Assumption A4 imposes a lower bound on the degree of risk aversion times the absolute
value of the bad endowment, a(−θ) for all a ∈ [a, a]. It is a condition on both the range
of a and θ: For any large θ, one can find a small a such that assumption A4 is violated.
Intuitively, for any large payment without limitations on a, one can find clients whose utility
is sufficiently close to a risk-neutral one (i.e., a close to 0) such that risk aversion barely kicks
in. Assumption A4 rules out such almost risk-neutral clients – relative to the bad endowment.
Hence, it demands that risk aversion is relevant for all clients.

Proposition 1 (Self-Selection). Suppose assumptions A1 - A4. For given contracts (b1, γ1)
and (b2, γ2) with ∆b > 0, there is at most one indifferent client a∗(γ⃗) satisfying

g(a∗(γ⃗), γ⃗) = g̃(⃗b) = p∆b

1 − b1p
. (4)
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Such an indifferent client a∗(γ⃗) ∈ [a, a] indeed exists, if

g(a, γ⃗) ≤ p∆b

1 − b1p
≤ g(a, γ⃗). (5)

In this case, client a will choose insurer 1 iff

a ≥ a∗(γ⃗). (6)

Proof. See Appendix A2.

The result implies market segmentation. Clients with a risk aversion larger a∗(γ⃗) buy
from insurer 1, while insurer 2 receives clients with a level of risk aversion below the threshold
a∗(γ⃗), as depicted in Figure 3.

Figure 3: Market Segmentation for Two Contracts, (b1, γ1) and (b2, γ2) with b2 > b1

a
Least Risk-Averse

a
Most Risk-Averse

a∗(γ1, γ2)

Clients of Insurer 2
(With Higher Default Risk)Clients of Insurer 1

Formally, for given default risks b⃗, a∗ is defined via g(a∗(⃗b, γ⃗), γ⃗) = g̃(⃗b) on the set

G[a,a] :=
{
γ⃗ | 0 ≤ γ2 < γ1 ≤ γmax and g(a, γ⃗) ≤ g̃(⃗b) ≤ g(a, γ⃗)

}
. (7)

Let G0 :=
{

0 ≤ γ2 < γ1 ≤ γmax
}
. Then the insurers’ profits are

Π1(γ1, γ2) =


(a − a∗(γ1, γ2)) γ1 on G[a,a]

(a − a) γ1 on G0 \ G[a,a] if g̃(⃗b) ≤ g(a, γ⃗)

0 on G0 \ G[a,a] if g(a, γ⃗) ≤ g̃(⃗b)

(8)

Π2(γ1, γ2) =


(a∗(γ1, γ2) − a) γ2 on G[a,a]

0 on G0 \ G[a,a] if g̃(⃗b) ≤ g(a, γ⃗)

(a − a) γ2 on G0 \ G[a,a] if g(a, γ⃗) ≤ g̃(⃗b)

(9)
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In the following we restrict attention to the set G[a,a].

The setup admits no closed-form solutions. Instead, in the remainder of this section,
we characterize market share elasticities and graphically illustrate the setup. The following
notation is introduced for an explicit characterization in the next Lemma of how the indiffer-
ent client changes as either insurer increases prices, but not needed for the subsequent text.
Define

Ã : [a, a] × [0, −θ)2 → R, (a, γ⃗) 7→ exp(−a∆γ) (10)

and B̃i : [a, a] × [0, −θ) → R, (a, γi) 7→ exp(−a(θ + γi)) (11)

and let

A(γ⃗) := Ã(a∗(γ⃗), γ⃗), and Bi(γ⃗) := B̃i(a∗(γ⃗), γi) (12)

be the two functions, defined on [0, −θ)2, one obtains when inserting the indifferent client
a∗(γ⃗) into (10) and (11). Since, for given b⃗, the RHSs of (3) and (A32) are constant, we infer
that the respective LHSs, i.e.

g(a∗(γ⃗), γ⃗) = A(γ⃗) − 1
B2(γ⃗) − 1 and h(a∗(γ⃗), γ⃗) =

1 − 1
A(γ⃗)

B1(γ⃗) − 1 , (13)

are constants, and call them g and h, respectively. Finally, define

ξ2 := (θ + γ2), φ1 := ξ2B1 and τ1 := (∆γ − gφ1) , (14)

as well as ξ1 := (θ + γ1), φ2 := ξ1B2, and τ2 := (∆γ − hφ2) . (15)

The following Lemma shows that both insurers indeed lose market share when increasing
prices.

Lemma 2 (Market Shares). Suppose assumptions A1 - A4. The indifferent client is
increasing in γ1 and decreasing in γ2, namely

∂1a
∗ = a∗

τ1
> 0 (16)
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∂2a
∗ = −a∗

τ2
< 0. (17)

For the slope of a contour line {(γ1, γ2)| a∗(γ1, γ2) constant} we have

−∂2a
∗

∂1a∗ =: α < 1. (18)

Proof. See Appendix A4.

Figure 4 visualizes the setup with prices set by insurers 1 and 2 on the x- and y-axis, re-
spectively. With insurer 1 the insurer with the lower default risk offering insurance at a higher

Figure 4: Illustration of the Setup

0

{γ⃗|a∗(γ⃗) = a}

{γ⃗|a∗(γ⃗) = a}

γ1

γ2

γmax

γmax

γ2

γ1

Π2 = 0

Π1 = 0

Notes: The figure depicts, for given default risks, insurer 1’s and 2’s prices on the x- and y-axis, respectively.
See the text for a detailed explanation.

price, pairs of prices lie below the diagonal. The green line just below the diagonal depicts the
pairs of prices above which insurer 2 has no market share and, subsequently, no profits. For
γ2 ∈ [0, γmax], we parameterize these pairs by defining γ

a
1 (γ2) such that a∗(γa

1 (γ2), γ2) = a.
From Lemma 2 we know that contour lines of a∗ have a slope below one.

The visualization in Figure 4 offers an alternative justification for assumption A4. Denote
by γ1 and γ2 the intercepts of upper green line, γ

a
1 (·), with the x- and y-axis, respectively.

Assumption A4 is equivalent to demanding γ2 > 0 (see Appendix B3 for details). In other
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words, assumption A4 demands that insurer 1 does not a priori get the entire market –
making the setup interesting to begin with.

4 Stage 2: Price Setting

This section establishes existence and uniqueness of a Nash equilibrium in prices in t = 2 for
a given pair of default risks under the following two additional assumptions.

Assumption A5.

a ≤ 3
2 a.

Assumption A6.

∂1Π1 (γa
1 (γ∗

2(γmax)), γ∗
2(γmax)) ≥ 0.

Assumption A6 is a technical assumption involving insurer 2’s reaction function γ∗
2 . It

demands that at a point at which insurer 1 “owns” the entire market, insurer 1 has no
incentive to decrease prices. The assumption is required because a negative market share at
negative prices also leads to positive turnover – a case certainly not of interest.

Proposition 2 (Existence and Uniqueness). Suppose assumptions A1 - A6. Consider a
pair of default risks (b1, b2) with ∆b ≥ 0. Then,

i) If b1 < b2, there exists a unique Nash equilibrium in prices (γ1, γ2).

ii) If b1 = b2, a client can be indifferent only if γ2 = γ1. That is, if insurers’ default risks
coincide, pure price competition drives prices to marginal costs (which are set to zero
here).

Proof. See Appendix A11. The proof builds on the existence of insurer 1’s and insurer 2’s
reaction functions (Propositions 3 and 4).

The intuition of the proof is as follows: Insurer 2’s reaction function, γ∗
2(γ1) in red, is

strictly increasing. Thus, there exists an inverse function. From the boundary values of the
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Figure 5: Price Equilibrium

0

{γ⃗|a∗(γ⃗) = a}

{γ⃗|a∗(γ⃗) = a}
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γmax

γ2

γ1

Π2 = 0

Π1 = 0

γ∗
2 (γ1)

γ⊗
1 (γ2)

γ∗
2(γmax)

Notes: The figure depicts, for given default risks, insurer 1’s and 2’s prices on the x- and y-axis, respectively.
See the text for a detailed explanation.

inverse function, there must be an intersection with insurer 1’s reaction function, γ⊗
1 (as

depicted in Figure 5). Formally, we apply Brouwer’s Fixed Point Theorem for existence.
From the bounds on ∂2γ

⊗
1 and ∂1γ

∗
2 in Propositions 4 and 3, respectively, it follows that there

can be at most one intersection.

We now formally show existence and properties of insurer 1’s and insurer 2’s reaction
functions.

Proposition 3 (Insurer 2’s Reaction Function). Suppose assumptions A1 - A4. Suppose
some fixed default risks (b1, b2) with ∆b > 0. Then,

i) for any γ1 ∈ [0, γmax], there is a unique best response in prices for insurer 2, γ∗
2(γ1). For

γ1 ∈ (γ1, γmax), γ∗
2 is in the interior of G[a,a] and uniquely characterized via ∂2Π2 = 0.

ii) for γ1 ∈ [γ1, γmax], γ∗
2 is a smooth function and strictly increasing in γ1.

iii) ∂1γ
∗
2 < 1/α∗ with α∗ := α(γ1, γ∗

2(γ1)), i.e., α evaluated on insurer 2’s reaction function.

Proof. See Appendix A6.
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The strategy of the proof is standard: Uniqueness follows from ∂2
2Π2 < 0, and existence

follows since profits are a continuous function that is zero at the boundaries of the interval.

For the other insurer, existence of a reaction function is not straightforward since insurer
1’s profit function is not necessarily concave. In fact, parameter restrictions ensuring con-
cavity are not compatible with the existing set of assumptions that require risk aversion to
have enough bite. Without concavity of insurer 1’s profit function, points that satisfy the
first-order condition need not correspond to best responses. Instead, we prove an auxiliary
Lemma (Lemma 4 in the Appendix) for a smooth real-valued function f on some interval
[a, b] with ∂f(a) > 0: If there exists a point in the interval below which local extrema may
only be local minima and above which local extrema may only be local maxima, then f has
a global maximum. Assumptions A5 and A6 ensure that we can use this Lemma to obtain
insurer 1’s best responses for the relevant interval, that is, for γ2 ∈ [0, γ∗

2(γmax)].

Proposition 4 (Insurer 1’s Reaction Function). Suppose assumptions A1 - A6. Suppose
some fixed default risks (b1, b2) with ∆b > 0. Then,

i) for any γ2 ∈ [0, γ∗
2(γmax)], there is a unique best response in prices for insurer 1, γ⊗

1 (γ2).
γ⊗

1 is uniquely characterized via

∂1Π1(γ⊗
1 (γ2), γ2) = 0 or

(
γ⊗

1 (γ2) = γmaxand ∀µ ≥ γ
a
1 (γ2) : ∂1Π1(µ, γ2) > 0

)
.

ii) γ⊗
1 is a continuous function, smooth except at finitely many points.

iii) ∂2γ
⊗
1 < α⊗ with α⊗ := α(γ⊗

1 (γ2), γ2), i.e., α evaluated on insurer 1’s reaction function.

Proof. See Appendix A7.

5 Stage 1: Choices of Default Risks

This section analyses subgame-perfect equilibria in default risks and the competitive mech-
anism at play.

The model features vertical product differentiation: Ceteris paribus, all clients prefer the
insurer with the lower default risk, but clients differ in their valuation for low default risks.
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Compared to the standard model of vertical product differentiation as in Shaked and Sutton
(1982) or Tirole (1988), the inclusion of risk aversion leads to non-linear utility which does
not admit closed-form solutions. Yet, an analog to the result in Shaked and Sutton (1982)
that the high-quality firm has larger profits still holds.

Proposition 5 (Lower Default Risk More Attractive). Suppose assumptions A1 - A6.
At any Nash equilibrium in prices,

i) the insurer with the lower default risk (quality leader) has larger profits, Π1 > Π2,

ii) the insurer with the lower default risk has a larger market share, (a − a∗) > (a∗ − a).

Proof. See Appendix A12.

There is a simple characterization of default risks that lead to the same price equilibrium.

Proposition 6 (Price Equilibrium Depends on the Default Risk Gap). Suppose
assumptions A1 - A6.

i) Default risks (b0
1, b0

2) and (b1, b2) with g̃(b1, b2) = g̃(b0
1, b0

2) lead to the same price equilib-
rium.

ii) On the set of default risks {b ∈ [0, bmax]2|b1 < b2}, price equilibria (and subsequently
profits) are constant on straight lines with slope (1 − g̃).

Proof. See Appendix A13.

Figure 6 illustrates the result, with default risks of insurers 1 and 2 on the x- and y-axis,
respectively. Since insurer 1 has the lower default risk, the default risks lie above the diagonal
(shaded). For (b0

1, b0
2), the blue line depicts all pairs of default risks that lead to the same

value of g̃ and, consequently, the same price equilibrium. g̃ is small, so the slope of the blue
line is nearly parallel to the 45-degree line. Therefore, the gap between pairs of default risks
that lead to the same price equilibrium (default risk gap) changes only slightly as b1 changes.

For default risks b⃗ = (b1, b2), let γ⃗□(⃗b) be the corresponding price equilibrium. As shown
in Proposition 2, the price equilibrium exists and is unique; hence γ⃗□(⃗b) is well-defined. In
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Figure 6: Default Risks Leading to the Same Price Equilibrium Lie on Straight Lines

b1

b2

bmax

bmax0

{(b1, b2)|g̃(b1, b2) = g̃(b0
1, b0

2)}
same price equilibrium

b0
1

b0
2

Default Risk Gap

Notes: The figure depicts insurer 1’s and 2’s default risks on the x- and y-axis, respectively. See the text for
a detailed explanation.

Appendix B4, we show that price equilibria are smooth functions in qualities. By Π□
i (⃗b),

we denote profits associated with a pair of default risks under optimal price setting in the
subsequent period, Π□

i (⃗b) := Πi

(
γ⃗□(⃗b), b⃗

)
.

Proposition 7 (First Mover Chooses a Low Default Risk, Second Mover Follows).

Suppose assumptions A1 - A6. Let Π∗
2 be the global maximum of Π□

2 (0, b2) as a function of
b2. Let bs

2 and bl
2 be the smallest and largest b2 for which this maximum is assumed, i.e., bs

2 is
the smallest default risk gap of a subgame-perfect equilibrium of the form (0, b2). Let (b∗

1, b∗
2)

be a subgame-perfect Nash equilibrium in default risks. Then

i) b∗
1 < bs

2.

ii) b∗
2 ≤

(
2 − g̃(0, bl

2)
)

bl
2.

A general upper bound for b∗
1 is

b∗
1 <

( 8
15

)
bmax. (19)

Proof. See Appendix A14.

The intuition is illustrated in Figure 7, where Panel (a) shows a feasible and profitable
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deviation for the second mover, which is infeasible in Panel (b). The default risk of the
lower-risk and higher-risk insurer is depicted on the x- and y-axis, respectively. In Panel
(a), consider the default risk pair b0

1 < b0
2 as indicated by the blue dot. Other default risk

pairs leading to the same price equilibrium lie on straight lines, as shown by Proposition 6
and indicated by the blue line. A profitable deviation for the second mover is to choose a
default risk that leads to the same price equilibrium but with reversed roles (the reversal of
roles is indicated in Panel (a) by the grey dotted lines, while the profitable deviation for the
second mover is indicated by the red dotted line). Such profitable deviations are infeasible
for default risk choices of the first mover below bs

2 — as illustrated in Panel (b). The risk
level that rules out this profitable deviation is characterized by i) or (19) in Proposition 7.

Figure 7: Competitive Mechanism

(a) (b1
1, b1

2) Leads to Reversed Roles

b1

b2

bmax

bmax0

bs
2

bs
2

b0
2

b0
1

b1
2 = b0

1

b1
1

(b) Profitable Deviation in (a) Infeasible

b1

b2

bmax

bmax0

bs
2

bs
2

b0
2

b0
1

Notes: Each panel depicts insurer 1’s and 2’s default risks on the x- and y-axis, respectively. See the text for
a detailed explanation.

Proposition 7 implies that the maximal default risk to ensure the position of quality leader
is smaller than the smallest optimal default risk gap (at b1 = 0.) This is approximately equal
to the smallest optimal default risk gap at other b1, since the blue line is almost parallel to
the 45-degree line. Hence, the smallest optimal default risk gap is approximately an upper
bound for the default risk of the first mover, and therefore, twice the default risk gap is
approximately an upper bound for the second-mover’s default risk.
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Under two conditions that are simple but probably more restrictive than necessary, the
competitive situation can be summed up based on the default risk gap.

Proposition 8 (Push-and-Pull Effect for Second Mover). Suppose assumptions A1 -
A6 and that the following two conditions hold

Π□
2 (0, b2) as a function of b2 has a unique maximum for a b2 < bmax, (N1)

Π□
1 (0, b2) as a function of b2 is increasing in b2. (N2)

Let Π∗
2 be the global maximum of Π□

2 (0, b2), assumed at bs
2. Let b̄1 be the minimum of all b1

such that Π□
1 (0, b1) = Π∗

2. Then, (b∗
1, b∗

2) is a subgame-perfect equilibrium iff

b∗
1 ∈ [0, b̄1] (20)

b∗
2 = (1 − g̃(0, bs

2))b∗
1 + bs

2. (21)

The second-mover’s choice of default risk is pinned down by the first-mover’s choice plus the
optimal default risk gap. The first-mover’s choice of default risk thus exerts a push-and-pull
effect on the second-mover’s choice of default risk.

Proof. See Appendix A15.

Proposition 8 suggests that the first mover chooses a default risk pinned down by the
default risk gap, and the second mover follows at an optimal distance. This is in contrast
to the result of maximal product differentiation as in the standard model in Tirole (1988),
which closely follows Shaked and Sutton (1982). In Tirole (1988), two firms compete in
quality (chosen first) and price (chosen second) for clients that differ in their valuation of
quality. The key mechanism is that for any two pairs of quality choices, firms choose prices
in such a way that the resulting market shares remain unchanged. This eliminates a quantity
effect, and with only a price effect left, firms soften price competition as much as possible by
choosing maximally differentiated qualities. The result of maximal differentiation in qualities
in the standard model hinges on three assumptions: first, clients’ utility is linear; second, it is
assumed that the market is always fully covered; and third, costs are quality-invariant. In the
present model, the main departure from the standard model is the non-linearity of the utility
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function stemming from risk aversion in the insurance context. As a result, market shares
are no longer invariant for varying quality pairs, and we obtain market discipline in quality
choices. In the Online Appendix, I revisit the standard model and show that one can obtain
a similar result in the standard model with linear utility when removing the assumptions of
full market coverage and introducing (general) convex costs for quality provision.

While conditions (N1) and (N2) cannot hold in general, e.g., a parameter value of bmax

sufficiently small may violate (N1), I conjecture that they hold for a wide range of parameters.
They hold in a numerical example for plausible parameter values, as shown in the following
section.

6 Numerical Example

In a numerical example with plausible parameter values, I explicitly characterize the subgame-
perfect Nash equilibria and demonstrate that the default risk gap can indeed be small.

Parameter Values. Consider the model for a specific set of parameters, namely

θ = −100 · 106 (22)

p = 0.03 (23)

a(−θ) = 4.5 (24)

a = 3
2a (25)

γmax = 33 · 106 (26)

bmax = 1
3 (27)

(22) and (23) correspond to a scenario with a large rare loss, e.g., a 100 million loss from
a sudden movement in exchange rates that occurs every 33 years on average. (24), (25),
(26) and (27) are chosen in the simplest way such that assumptions A4, A5, A3 and A2,
respectively, are satisfied.

Based on Proposition 6, we first consider b1 = 0.

Solving for the price equilibrium for (0, b2) for some fixed b2. For (0, b2), we numerically
solve for the indifferent client as a function of prices (γ1, γ2). As an illustration, for b2 = 0.15,
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Figure 8 shows the resulting profit functions for both insurers.

Figure 8: Illustration of Insurers’ Profit Functions at b2 = 0.15
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2

1e7

0.00.51.01.52.02.53.0
1

1e7

0.0
0.5

1.0
1.5

2.0
2.5

3.0

1

0.0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) Insurer 2
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Notes: The figure shows insurer 1’s (Panel (a)) and insurer 2’s (Panel (b)) profits (z-axis) as functions of
prices (γ1 on the x-axis, γ2 on the y-axis) in a numerical example. Profit functions are drawn for the following
vector of default risks: b0 = 0, b1 = 0.15. The parameter values used in the numerical example are listed in
the text.

Equilibrium profits for (0, b2) as a function of b2. We then solve for price equilibria (and
subsequently profits) for a range of b2. Figure 9 shows the resulting equilibrium profits for
both insurers as a function of b2. In particular, the second mover’s profit as a function of b2

has a unique interior maximum, while the first mover’s profit as a function of b2 is increasing.
That is, conditions (N1) and (N2) hold. Additionally, insurer 1’s are an order of magnitude
larger than insurer 2’s.

Equilibrium qualities. We then calculate b̄1 ≈ 0.0023, hence the resulting equilibrium
default risks are

b∗
1 ∈ [0, 0.0023] (28)

b∗
2 = 0.9972 b∗

1 + 0.0937. (29)

In particular, the first mover chooses a default risk close zero, and the second mover follows
at a distance that equals the optimal default risk gap. This default risk gap is lower than a
third of the largest admissible default risk in the model setup.
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Figure 9: Equilibrium Profits as a Function of b2

(a) Insurer 1
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Notes: The figure shows insurer 1’s (Panel (a)) and insurer 2’s (Panel (b)) profits (y-axis) as functions of the
default risk gap in a numerical example. As motivated in the text, b1 is fixed at zero and insurer 2’s default
risk, b2, is depicted on the x-axis. The parameter values used in the numerical example are listed in the text.

Equilibrium prices are depicted in Figure 10.

Figure 10: Equilibrium Prices
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Notes: The figure shows optimal prices at varying default risk gaps in a numerical example. Insurer 1’s
and insurer 2’s prices are depicted on the x- and y-axis, respectively. The red line depicts pairs of optimal
prices for (0, b2) with b2 ranging in [0, 1/3], with the prices at the equilibrium in default risks marked. The
parameter values used in the numerical example are listed in the text.
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7 Application to Derivatives Markets

An application of the model setup is the derivatives market, as it naturally maps key features
of these markets. First, the stylized insurance contract considered in the model is typical
for derivatives markets: the contract features full coverage against a macro risk (as does,
e.g., a plain-vanilla interest rate swap) but comes with the risk of counterparty default.
Thus, both the price of the derivative and the counterparty risk may influence the purchase
decision. Second, derivatives markets have a hub-and-spoke structure with numerous clients
with differing risk attitudes seeking insurance from a small set of large banks (called dealers)
– which aligns with the model structure. Third, dealers choose their own default risk, e.g.,
by setting aside capital, choosing liquidity buffers, or maintaining balanced trading books.
Gregory (2014, p.135), for example, details how an institution’s creditworthiness as assessed
by ratings plays a role, as well as its capital base, liquidity, and operational requirements for
processing trades.

Introducing a central counterparty (CCP) in derivatives markets raises questions about
its impact on competition among dealers. In a centrally cleared market, a CCP interposes
itself between a buyer and a seller, replacing the existing contract between them with two
contracts that each have the CCP on one end. It thereby insulates the contracting parties
from the risk that the counterparty defaults. CCPs can support financial stability through
netting, enforcing margining and improving transparency for better regulatory oversight.
However, the effects on competition in a highly concentrated market are little understood.

The starting point of this project was the observation that in a centrally cleared market
unless there is a default, the client-dealer relationship remains largely unchanged because
clients do not directly interact with the CCP. Only members of the CCP can directly clear
with the CCP, while most market participants access clearing services through members
(CPMI, IOSCO, 2022). Consider a trade where a market participant buys a derivative from
a dealer. Suppose the common situation in which the dealer is a member of the CCP and not
only the executing broker of the trade but also the client’s clearing service provider. Then,
the resulting flow is: client — client account at the dealer – CCP — house account dealer.
Thus, from the dealer’s perspective, client clearing changes little as the CCP protects the
dealer from its own default while the client still buys the derivative from the dealer.
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However, central clearing alters the nature of competition between dealers, and my model
is able to clarify a market force that may be absent in a centrally cleared market. A CCP
facilitates porting arrangements, meaning that if a clearing member defaults, clients’ portfo-
lios are transferred to another solvent member (Braithwaite, 2016; Braithwaite and Murphy,
2020). The success of the London Clearing House (LCH) during the Global Financial Crisis
can largely be attributed to such porting arrangements. From the client’s perspective, there
is no longer differentiation in contract continuity between dealers, eliminating this quality
dimension of competition. Viewed through the lens of the model, the market force that in-
centivizes dealers to choose a low default risk – beyond requirements mandated by regulation
– may then be absent: This paper shows that with two-dimensional competition in price
and default risk, market discipline in the choice of default risks emerges. Without perceived
differences in default risks, pure price competition prevails.

8 Conclusion

I study precautionary measures insurance sellers undertake to ensure their solvency within
a model of vertical product differentiation. To that end, I introduce the seller’s default
risk as a quality dimension of the insurance product. Analogous to standard analyses of
vertical product differentiation, I show that more risk-averse clients self-select to buy from
the dealer with the lower default risk, leading to market segmentation and higher profits for
the dealer with the lower default risk. The key insight from the model is that competition
in two dimensions (price, default risk) gives rise to market discipline in insurers’ default risk
choices: the first over in the choice of default risk chooses a low default risk, and the second
mover follows suit.

I discuss the model implications for competition in derivatives markets. The result high-
lights a market force that may be absent in a centrally cleared market where dealers compete
for clients but are insulated from competition in default risk.

A central counterparty in the model framework is conceptualized ad-hoc and not formally
introduced, leaving many aspects of central clearing (e.g., loss-sharing mechanisms, margins,
CCP’s default probability) beyond the scope of the current model. Retaining the simple
framework that maps the market structure with client clearing and incorporates risk aversion
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while modeling a CCP in more detail is left for future research.
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APPENDIX

A Appendix: Proofs

Remark 1. I use the following notation. For functions G : R3 → R and H : R2 → R3,

D(G ◦ H) = (∂1(G ◦ H), ∂2(G ◦ H)) =: (d1G, d2G) .

This is to indicate that the chain rule on the composite function is considered although we
write G instead of the composite function (G ◦ H) for brevity. Here, typically H : (γ1, γ2) 7→
(a∗(γ1, γ2), γ1, γ2).

A1 Proof of Lemma 1
For the indifferent client we have

Ua(b1, γ1) = Ua(b2, γ2) (A3)
⇔ (1 − b1p)ua(−γ1) + b1pua(θ) = (1 − b2p)ua(−γ2) + b2pua(θ) (A4)

⇔ ua(−γ1) − ua(−γ2) + p [b2ua(−γ2) − b1ua(−γ1)] = p∆bua(θ) (A5)
⇔ [ua(−γ1) − ua(−γ2)] (1 − b1p) = p∆b [ua(θ) − ua(−γ2)] (A6)

⇔ ua(−γ1) − ua(−γ2)
ua(θ) − ua(−γ2)

= p∆b

1 − b1p
(A7)

⇔ exp(−a∆γ) − 1
exp(−a(θ + γ2)) − 1 = p∆b

1 − b1p
. (A8)

□

A2 Proof of Proposition 1
ad i). The proof proceeds by showing that ∂ag < 0. Suppose this was true. Then the LHS of
(3) is monotonically decreasing, while the RHS of (3) is fixed, yielding at most one solution.

Claim. ∂ag < 0.

Proof of claim. For the derivative of the function g with respect to a we get

∂g(a)
∂a

= −∆γ exp(−a∆γ) (exp(−a(θ + γ2)) − 1)
(exp(−a(θ + γ2)) − 1)2 (A9)

+(exp(−a∆γ) − 1) (θ + γ2) exp(−a(θ + γ2))
(exp(−a(θ + γ2)) − 1)2

= 1
(exp(−a(θ + γ2)) − 1)2

[
exp(−a∆γ)

(
− ∆γ (exp(−a(θ + γ2)) − 1) (A10)
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+(θ + γ2) exp(−a(θ + γ2))
)

− (θ + γ2) exp (−a(θ + γ2))
]

= 1
(exp(−a(θ + γ2)) − 1)2 (A11)[
exp(−a∆γ)

(
exp (−a(θ + γ2)) (θ + γ1) + ∆γ

)
− (θ + γ2) exp(−a(θ + γ2))

]

= exp(−a∆γ)
(exp(−a(θ + γ2)) − 1)2︸ ︷︷ ︸

>0

(A12)

[
∆γ︸︷︷︸
<0

+ exp (−a(θ + γ1))︸ ︷︷ ︸
>0

(
exp(−a∆γ)(θ + γ1) − (θ + γ2)

)
︸ ︷︷ ︸

:=f(a)

]

using that

exp(−a(θ + γ2)) = exp(−a(θ + γ1)) exp(−a∆γ). (A13)

Then

f(a) < 0 ⇒ ∂g(a)
∂a

< 0. (A14)

We have

f(a) = exp(−a∆γ)(θ + γ1) − (θ + γ2) < 0 (A15)
⇔ exp(−a∆γ)(θ + γ1) < (θ + γ2) (A16)

⇔ exp(−a(θ + γ2))
exp(−a(θ + γ1))

(θ + γ1) < (θ + γ2) (A17)

⇔ exp(−a(θ + γ2))
(θ + γ2)

<
exp(−a(θ + γ1))

(θ + γ1)
. (A18)

For x < 0 the function

h(x) := exp(−ax)
x

(A19)

is negative and

h′(x) = h(x)
[
−a − 1

x

]
> 0 ⇔ a + 1

x
> 0 ⇔ a(−x) > 1. (A20)

For x = θ + γ this is true from assumption A3. Since θ + γ2 < θ + γ1, (A18) indeed holds
and proves the claim.

ad ii). With g(·, γ⃗) strictly decreasing, existence under (5) follows immediately.
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ad iii). A client with risk aversion parameter a chooses insurer 1 if

Ua(b1, γ1) > Ua(b2, γ2) (A21)
⇔ (1 − b1p)ua(−γ1) + b1pua(θ) > (1 − b2p)ua(−γ2) + b2pua(θ) (A22)

⇔ [ua(−γ1) − ua(−γ2)] (1 − b1p) > p∆b (ua(θ) − ua(−γ2))︸ ︷︷ ︸
<0

(A23)

⇔ ua(−γ1) − ua(−γ2)
ua(θ) − ua(−γ2)

<
p∆b

1 − b1p
(A24)

⇔ g(a) < g(a∗) (A25)
⇔ a > a∗(γ1, γ2). (A26)

□

A3 Proof of Lemma 3
The idea is to proceed analogously to the proof of Proposition 1, but add and subtract
b2ua(−γ1) instead of b1ua(−γ2). Namely, for the indifferent client we have

Ua(b1, γ1) = Ua(b2, γ2) (A27)
⇔ ua(−γ1) − ua(−γ2) + p [b2ua(−γ2) − b1ua(−γ1)] = p∆bua(θ) (A28)

⇔ [ua(−γ1) − ua(−γ2)] (1 − b2p) = p∆b [ua(θ) − ua(−γ1)] (A29)

⇔ ua(−γ1) − ua(−γ2)
ua(θ) − ua(−γ1)

= p∆b

1 − b2p
(A30)

⇔ 1 − exp(−(−a∆γ))
exp(−a(θ + γ1)) − 1 = p∆b

1 − b2p
. (A31)

□

A4 Proof of Lemma 2
An auxiliary lemma offers a second characterization of the indifferent client, symmetric to
the one in Lemma 1, and exploiting this symmetry will be key in the sequel.

Lemma 3. The client who is indifferent between two contracts (b1, γ1) and (b2, γ2) with
∆b > 0, has a second characterization

h(a, γ⃗) := 1 − exp(−(−a∆γ))
exp(−a(θ + γ1)) − 1 = p∆b

1 − b2p
. (A32)

Proof.
The idea is to proceed analogously to the proof of Proposition 1, but add and subtract
b2ua(−γ1) instead of b1ua(−γ2). Namely, for the indifferent client we have

Ua(b1, γ1) = Ua(b2, γ2) (A33)
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⇔ ua(−γ1) − ua(−γ2) + p [b2ua(−γ2) − b1ua(−γ1)] = p∆bua(θ) (A34)
⇔ [ua(−γ1) − ua(−γ2)] (1 − b2p) = p∆b [ua(θ) − ua(−γ1)] (A35)

⇔ ua(−γ1) − ua(−γ2)
ua(θ) − ua(−γ1)

= p∆b

1 − b2p
(A36)

⇔ 1 − exp(−(−a∆γ))
exp(−a(θ + γ1)) − 1 = p∆b

1 − b2p
. (A37)

□

Following the notation as noted in the remark at the beginning of the appendix, ∂ia
∗ =

dia
∗. We show three claims from which Lemma 2 directly follows.

Claim 1. a∗ = τ1(d1a
∗) with τ1, (d1a

∗) > 0.

Claim 2. a∗ = τ2(−d2a
∗) with τ2, (−d2a

∗) > 0.

Claim 3. (−d2a
∗)/(d1a

∗) =: α = (1 − gB1) = 1/(1 + hB2) = τ1/τ2 < 1.

Proof of claim 1. For the function g(a∗(γ⃗), γ⃗), as defined in (3), we have from Proposition
1

0 = d1g = ∂1g|a=a∗ + ∂ag|a=a∗ · d1a
∗ (A38)

⇔ d1a
∗ = −∂1g|a=a∗

∂ag|a=a∗
. (A39)

In the following write ∂ig shorthand for ∂ig|a=a∗ . We have

∂1g = a∗ A

B2 − 1 > 0. (A40)

and from Proposition 1 we know that ∂ag < 0. Hence, in light of (A39), we have d1a
∗ > 0.

Further, note that the expression for ∂ag, derived in the proof of Proposition 1, can be
written in short-hand notation as follows

∂ag = A

(B2 − 1)

[
− ∆γ + (θ + γ2)

(A − 1)
(B2 − 1)︸ ︷︷ ︸

=g

B2

A︸︷︷︸
=B1

]
(A40)= ∂1g

a∗ [−∆γ + gφ1] . (A41)

Inserted into (A38) this yields

0 = ∂1g + ∂1g

a∗ (−∆γ + gφ1)d1a
∗ (A42)

= ∂1g

a∗︸︷︷︸
>0

[a∗ + (−∆γ + gφ1)d1a
∗] . (A43)
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Hence

a∗ = (∆γ − gφ1) d1a
∗︸ ︷︷ ︸

>0

, (A44)

and subsequently

τ1 = (∆γ − gφ1) > 0. (A45)

Proof of claim 2. Analogously, for the function h(a∗(γ⃗), γ⃗), as defined in (A32), we have

0 = d2h = ∂2h|a=a∗ + ∂ah|a=a∗ · d2a
∗ (A46)

⇔ d2a
∗ = −∂2h|a=a∗

∂ah|a=a∗
. (A47)

Similar to before we write ∂ih shorthand for ∂ih|a=a∗ . Then we have

∂2h = (−a∗) 1
A(B1 − 1) < 0, (A48)

and

∂ah = (−∆γ) 1
A(B1 − 1) + (θ + γ1)

(1 − 1
A

)B1

(B1 − 1)2 (A49)

= 1
A(B1 − 1)2 [∆γ − ∆γB1 − (θ + γ1)B1 + (θ + γ1)AB1] (A50)

= 1
A(B1 − 1)2︸ ︷︷ ︸

>0

[
∆γ︸︷︷︸
<0

+ B1︸︷︷︸
>0

(
A(θ + γ1) − (θ + γ2)

)]
. (A51)

From the proof of Proposition 1 we know that A(θ +γ1)− (θ +γ2) is negative, hence ∂ah < 0.
Then from (A47) we get d2a

∗ < 0.

For the remaining part, note that AB1 = B2 and hence (A49) can also be written as

∂ah = 1
A(B1 − 1)

[
−∆γ + (θ + γ1)AB1

(1 − 1
A

)B1

(B1 − 1)

]
(A52)

= ∂ah

a∗ [∆γ − φ2h] . (A53)

Inserted into (A46) this yields

0 = ∂2h

a∗︸︷︷︸
<0

[a∗ + (∆γ − φ2h)d2a
∗] . (A54)
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Hence,

a∗ = −(∆γ − φ2h) d2a
∗︸ ︷︷ ︸

<0

, (A55)

and subsequently

τ2 = (∆γ − φ2h) > 0. (A56)

Proof of claim 3. We first establish that

(1 − gB1) = B1 − 1
B2 − 1 = 1

(1 + hB2)
. (A57)

This follows, since from the definition

1 − gB1 = 1 − A − 1
B2 − 1

B2

A
= B2 − A

A(B2 − 1) = B1 − 1
B2 − 1 (A58)

1 + hB2 = 1 +
1 − 1

A

B1 − 1B2 =
B1 − 1 + B2 − B2

A

B1 − 1 = B2 − 1
B1 − 1 . (A59)

In light of (16) and (17) we have

α = ∆γ − gφ1

∆γ − hφ2
(A60)

= (θ + γ2) − (θ + γ1) − gφ1

(θ + γ2) − (θ + γ1) − hφ2
(A61)

= (θ + γ2)(1 − gB1) − (θ + γ1)
−(θ + γ1)(1 + hB2) + (θ + γ2)

(A62)

=
(1 − gB1)

(
(θ + γ2) − 1

(1−gB1)(θ + γ1)
)

(θ + γ2) − (1 + hB2)(θ + γ1)
(A63)

= (1 − gB1), (A64)

which concludes the proof.

□

A5 Auxiliary Properties
Proposition 9. As always, we consider the set G[a, a]. Then the following properties hold

d2
2a

∗ = (−d2a
∗)

τ2

[
2 + hφ2a

∗
(
1 − ξ2

τ2

)]
< 0 (A65)

d1d2a
∗ = (d1a

∗)2 α

a∗

[
a∗ξ2

hφ2

τ2
− 2

]
> 0 (A66)
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d2
1a

∗ =
[ 2
a∗ − gφ1ξ2

α

τ1

]
(A67)

d2
2Π2 = (d2a

∗)
[
2 + γ2

τ2

(
(a∗ξ1)hφ2

τ1
− 2

)]
< 0 (A68)

d1d2Π2 = (d1a
∗)
[
1 + γ2

τ2

(
(a∗ξ2)hφ2

τ2
− 2

)]
> 0 (A69)

d2
1Π1 = (−d1a

∗)
[
2 + γ1

τ1

(
2 − a∗ξ2gφ1

τ2

)]
(A70)

d1d2Π1 = (−d2a
∗)
[
1 + γ1

τ1

(
2 − a∗ξ2hφ2

τ2

)]
(A71)

d2
1Π1 + 1

α
d1d2Π1 < 0, hence d2

1Π1 ̸= 0 ∨ d1d2Π1 ̸= 0. (A72)

Proof. text
ad d2

2a
∗. Note that

ξ1

τ1
− ξ2

τ2
= 1

τ1
[ξ1 − αξ2]︸ ︷︷ ︸

=−τ1

= −1 (A73)

We have,

d2
2a

∗ = d2

(
−a∗

τ2

)
(A74)

= −d2a
∗

τ2
+ a∗ 1

τ 2
2

d2τ2 (A75)

= −d2a
∗

τ2
[1 + d2τ2] (A76)

= −d2a
∗

τ2
[1 + 1 + hξ1B2(a∗ + (d2a

∗)ξ2)] (A77)

= −d2a
∗

τ2

[
2 + hφ2a

∗
(

1 − ξ1

τ2

)]
(A78)

= −d2a
∗

τ2

[
2 + hφ2a

∗ ξ1

τ1

]
(A79)

= (d2a
∗)︸ ︷︷ ︸

<0

1
τ 2

2

[
−2τ2 + hφ2(−a∗ξ1)

1
α

]
(A80)

d2
2a

∗ is negative iff

−a∗ξ1 > 2 τ2

−hφ2︸ ︷︷ ︸
∈(0,1)

α︸︷︷︸
<1

, (A81)

which is ensured by −aξ1 > 2 from assumption A3.
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ad d1d2a
∗. We have

d1φ2 = B2 + ξ1d1B2 (A82)
= B2 + ξ1B2(−d2a

∗)ξ2 (A83)
= B2 ((1 − ξ1ξ2d1a

∗) (A84)

Then

d1d2a
∗ = −d1

(
a∗

τ2

)
(A85)

= −d1a
∗τ2 − a∗(−1 − hB2(1 − ξ1ξ2d1a

∗)
τ 2

2
(A86)

= −d1a
∗ [τ2 − a∗ξ1ξ2hB2] + a∗(1 + hB2)

τ 2
2

(A87)

= −d1a
∗

τ 2
2︸ ︷︷ ︸

<0

[
τ2 − a∗ξ1ξ2hB2 + τ1(1 + hB2)

]
︸ ︷︷ ︸

=:W

(A88)

Hence, d1d2a
∗ > 0 if the expression in brackets is negative. This is indeed the case, since

W = 2∆γ + hB2 [τ1 − ξ1 − a∗ξ1ξ2] − gφ1 (A89)
= ∆γ(2 + hB2) − ξ1hB2 (1 + a∗ξ2)︸ ︷︷ ︸

=−1+(2+a∗(θ+γ2))

−gφ1(1 + hB2) (A90)

= hB2 [ξ1 + ∆γ] − gξ2B1(1 + hB2) − ξ1hB2(2 + a∗ξ2) + 2∆γ (A91)
= ξ2 (hB2 − gB1(1 + hB2))︸ ︷︷ ︸

= ∆B
B1−1 − ∆B

B2−1
B1−1
B2−1 =0

−ξ1hB2(2 + a∗ξ2) + 2∆γ (A92)

= −ξ1︸︷︷︸
>0

hB2 (2 + a∗ξ2)︸ ︷︷ ︸
<0

+ 2∆γ︸ ︷︷ ︸
<0

(A93)

< 0, (A94)

which together yields

d1d2a
∗ = (d1a

∗)hφ2

τ 2
2

(
a∗ξ2 + 2 τ2

(−hφ2)

)
(A95)

= (d1a
∗)hφ2

τ 2
2

[
a∗ξ2 + 2 τ2

(−hφ2)

]
(A96)

= (d1a
∗)2 α

a∗

[
a∗ξ2

hφ2

τ2
− 2

]
. (A97)

ad d2
1a

∗. We know

d1φ1 = φ1ξ2α(d1a
∗), (A98)
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hence

d2
1a

∗ = d1

(
a∗

τ1

)
(A99)

= d1a
∗

τ1
+ a∗d1

( 1
τ1

)
(A100)

(A98)= d1a
∗

τ1
− a∗ 1

(τ1)2

[
− 1 + gφ1ξ2α(d1a

∗)
]

(A101)

= d1a
∗

τ1

[
2 − gφ1ξ2α(d1a

∗)
]

(A102)

= (d1a
∗)a∗

τ1

[
2
a∗ − gφ1ξ2α

d1a
∗

a∗

]
(A103)

= (d1a
∗)2

[ 2
a∗ − gφ1ξ2

α

τ1

]
. (A104)

ad d2
2Π2. Using (A66) and (A65),

d2
2Π2 = 2d2a

∗ + γ2d
2
2a

∗ (A105)

= (d2a
∗)
[
2 + γ2

τ 2
2

(
(−hφ2)a∗(τ2 − ξ2) − 2τ2

)]
< 0 (A106)

We use ξ1/τ1 − ξ2/τ2 = (−1) to simplify to

d2
2Π2 = (d2a

∗)
[
2 + γ2

τ2

(
(a∗ξ1)hφ2

τ1
− 2

)]
. (A107)

ad d1d2Π2. Using (A66) and (A65),

d1d2Π2 = (d1a
∗) + (d1d2a

∗)γ2 (A108)

= (d1a
∗)
[
1 + γ2

τ 2
2

(
(−a∗ξ2)(−hφ2) − 2τ2

)
︸ ︷︷ ︸

:=E

]
> 0, (A109)

since E > 0 by assumption (A4). Again this further simplifies to

d1d2Π2 = (d1a
∗)
[
1 + γ2

τ2

(
(a∗ξ2)hφ2

τ2
− 2

)]
. (A110)

ad d2
1Π1. Using (A67),

d2
1Π1 = d1 [(a − a∗) − (d1a

∗)γ1] (A111)
= −2(d1a

∗) − γ1(d2
1a

∗) (A112)
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= −d1a
∗
[
2 + γ1(d1a

∗)
( 2

a∗ − gφ1ξ2
α

τ1

)]
(A113)

= −d1a
∗
[
2 + γ1

τ1

(
2 − a∗ξ2gφ1

τ2

)]
. (A114)

ad d1d2Π1. Using (A66),

d2d1Π1 = d2 [(a − a∗) − (d1a
∗)γ1] (A115)

= (−d2a
∗) − γ1(d1a

∗)2 α

a∗

[
a∗ξ2

hφ2

τ2
− 2

]
(A116)

= (−d2a
∗)
[
1 + γ1

τ1

(
2 − a∗ξ2hφ2

τ2

)]
. (A117)

ad d2
1Π1 + 1

α
d1d2Π1. Using (A66) and (A68),

d2
1Π1 + 1

α
(d1d2Π1) = (−d1a

∗)
[
2 + γ1

τ1

(
2 − (a∗ξ2)gφ1

τ2

)]
+ (d1a

∗)
[
1 + γ1

τ1

(
2 − (a∗ξ2)hφ2

τ2

)]

(A118)

= (−d1a
∗) + (d1a

∗)γ1

τ1

[
(a∗ξ2)gφ1

τ2
− (a∗ξ2)hφ2

τ2

]
(A119)

= (−d1a
∗)︸ ︷︷ ︸

<0

+(d1a
∗)γ1

τ1

(−a∗ξ2)
τ2︸ ︷︷ ︸

2/τ2>0

(hφ2 − gφ1)︸ ︷︷ ︸
<0

(A120)

< 0, (A121)

with (hφ2 − gφ1) < 0, since

gφ1 − hφ2 = hB2

[
gB1

hB2︸ ︷︷ ︸
=α

ξ2 − ξ1

]
= hB2τ2 > 0 (A122)

where the last equality follows, since

τ2 − ξ2 = ∆γ − hφ2 − (ξ1 + ∆γ) = (−ξ1)(1 + hB2) = −ξ1

α
. (A123)

A6 Proof of Proposition 3
Following the notation as noted in the remark at the beginning of the appendix, ∂1γ

∗
2 = d1γ

∗
2

and ∂iΠ2 = diΠ2. Auxiliary properties are proven in Appendix A5. We first prove the
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following central claim.

Claim. The following notation is used: For a function f(γ⃗) let f ∗(γ1) := f(γ1, γ∗
2(γ1)).

Then,

d1γ
∗
2 = (d1d2Π2)∗

(−d2
2Π2)∗ . (A124)

Proof of claim. By definition, 0 ≡ (d2Π2)∗ and thus

0 = d1((d2Π2)∗) = (d1d2Π2)∗ + (d2
2Π2)∗d1γ

∗
2 (A125)

⇔ d1γ
∗
2 = (d1d2Π2)∗

(−d2
2Π2)∗ . (A126)

ad i). From (A68) we have concavity of Π2, which ensures uniqueness of a solution. For
existence, note that γ2 7→ Π2(γ1, γ2) as continuous function on a compact interval, assumes
its maximum. But Π2(γ1, 0) = Π2(γ1, γmax) = 0, hence the maximum is assumed in the
interior.

ad ii). For γ∗
2 ∈ C∞, we make use of the implicit function theorem. We know d2Π2 ∈ C∞

and d2
2Π2 < 0. Hence, from the implicit function theorem the mapping

γ1 7→ γ∗
2(γ1) = argγ2 {d2Π2(γ1, γ2) = 0} (A127)

is smooth. Monotonicity of γ∗
2 follows from the claim together with (A69) and (A68).

ad iii). Using (A68) and (A69),

α∗d1γ
∗
2 = α∗ (d1d2Π2)∗

(−d2
2Π2)∗ (A128)

= α∗
(d1a

∗)
[
1 + γ2

τ2

(
(a∗ξ2)hφ2

τ2
− 2

)]

(−d2a∗)
[
2 + γ2

τ2

(
(a∗ξ1)hφ2

τ1
− 2

)] (A129)

=
1 + γ2

τ2

(
(a∗ξ2)hφ2

τ2
− 2

)

2 + γ2
τ2

(
(a∗ξ1)hφ2

τ1
− 2

) . (A130)

In the numerator
(a∗ξ2)hφ2

τ2
− 2 = (−a∗ξ2)

(−hφ2)
τ2

− 2 > 0, (A131)
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since a∗(−ξ2) > 2 from assumption A3, and in the denominator

(a∗ξ1)hφ2

τ1
− 2 = (a∗hφ2)

(
1 − ξ2

τ2

)
− 2 = (a∗ξ2)hφ2

τ2
− 2︸ ︷︷ ︸

>0

+ (−hφ2)a∗︸ ︷︷ ︸
>0

> 0, (A132)

hence, we get α∗d1γ
∗
2 < 1.

□

A7 Proof of Proposition 4
Following the notation as noted in the remark at the beginning of the appendix, ∂2γ

⊗
1 = d2γ

⊗
1

and ∂iΠ1 = diΠ1. The proof proceeds by showing a basic lemma from real analysis (Lemma
4) and then proving its applicability in the present context (Lemma 5 and Lemma 6). The
lemmata are presented upfront and proven in the subsequent appendices.

Notation. γa
1 (γ2) is defined similar to γ

a
1 (γ2). In particular, γa

1 (γ2) is defined as
a∗(γa

1 (γ2), γ2) = a if there is a solution in G[a,a], and as γa
1 (γ2) = γmax otherwise.

Lemma 4. Let f be a smooth function on some interval [a, b] ⊂ R. If there exists a µ ∈ [a, b]
such that

∀x < µ : df(x) = 0 ⇒ d2f(x) > 0 (S1)
∀x > µ : df(x) = 0 ⇒ d2f(x) < 0 (S2)

df(a) > 0, (S3)

then f has a global maximum τ and ∀x < τ : df(x) > 0 and ∀x > τ : df(x) < 0.
Lemma 5. Consider a fixed γ2 for which

d1Π1(γa
1 (γ2), γ2) > 0. (T3)

If assumption A5 holds, there exists a µ ∈ [γa
1 (γ2), γa

1 (γ2)] such that for all γ1 ∈ [γa
1 (γ2), γa

1 (γ2)]

γ1 < µ ⇒
(
d1Π1 = 0 ⇒ d2

1Π1(γ1) > 0
)

(T1)

γ1 > µ ⇒
(
d1Π1 = 0 ⇒ d2

1Π1(γ1) < 0
)
. (T2)

If µ = γa
1 (γ2), then γa

1 (γ2) = γmax.
Lemma 6. Assumption A6 implies that, for all γ2 ∈ [0, γ∗

2(γmax)],

d1Π1(γa
1 (γ2), γ2) > 0. (A133)

ad i). Lemma 5 and Lemma 6 show that for any γ2 ∈ [0, γ∗
2(γmax)] we can make use of

Lemma 4. Then we know from Lemma 4 that for all γ2 ∈ [0, γ∗
2(γmax)], a) Π1(·, γ2) has a

unique global maximum τ ∈ [γa
1 (γ2), γa

1 (γ2)], b) τ = argminµ{d1Π1 = 0 ∨ µ = γmax}, i.e., τ is
either the unique solution to d1Π1(τ) = 0, or τ = γmax, and, c) for all γ1 < τ : d1Π1(γ1) > 0
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and for all γ1 > τ : d1Π1(γ1) < 0.

ad ii). We consider γ⊗
1 separately on

N1 := {γ2 ∈ [0, γ∗
2(γmax)]|γ⊗

1 < γmax} (A134)
N2 := {γ2 ∈ [0, γ∗

2(γmax)]|γ⊗
1 = γmax} (A135)

and first show continuity on [0, γ∗
2(γmax)] = N1 ∪̇ N2.

On N1, we already know from (A71) that d2
1Π1 ̸= 0 ∨ d1d2Π1 ̸= 0. Hence {d1Π1 = 0} is

a smooth curve. Then we make a case distinction.

1) If d2
1Π1 ̸= 0, we know from the implicit function theorem that one can parameterize

{d1Π1 = 0} via γ⊗
1 (γ2). In particular, such a parameterization is smooth.

2) At a point q = (γ⊗
1 (γ2), γ2) with d2

1Π1(q) = 0, we have d1d2Π1(q) ̸= 0, hence one can
parameterize {d1Π1 = 0} locally via γ⊗

2 (γ1). γ⊗
2 (γ1) has to strictly increase in some

neighborhood around q or strictly decrease in some neighborhood around q, since otherwise
the inverse couldn’t exist. Hence, γ⊗

2 is bijective on some neighborhood U of γ⊗
1 (γ2) and

V of γ⊗
2 . Then γ⊗

1 is monotone on U and continuous.

Hence, γ⊗
1 is continuous on N1, N1 is open and γ⊗

1 is also continuous on the closure of N1,
N 1. Since the complement of N1 is N2, N2 is closed. On N2, γ⊗

1 is a constant function and
as such continuous on N2. Thus, since γ⊗

1 is continuous on N 1 and on N2, it is continuous
on [0, γ∗

2(γmax)].

It remains to show smoothness except at isolated points.

Again, we consider N1 first. If d2
1Π1 ̸= 0, the above argument has already shown smooth-

ness. At a point q = (γ⊗
1 (γ2), γ2) with d2

1Π1(q) = 0, we have d1d2Π1(q) ̸= 0, hence one can
parameterize {d1Π1 = 0} locally via γ⊗

2 (γ1). d2
1Π1(γ1, γ⊗

2 (γ1)) is an analytic function, i.e., the
Taylor expansion converges at every point with positive radius of convergence. From complex
analysis (see e.g. Theorem 4.8 in Shakarchi and Stein (2003)) we know that, if the zeros of
the function accumulate, then d2

1Π1(γ1, γ⊗
2 (γ1)) ≡ 0 on some open neighborhood U of γ1.

But this is a contradiction: Consider the image V := {(γ1, γ⊗
2 (γ1))|γ1 ∈ U} ⊂ {d1Π1 = 0}.

There, d2
1Π1 = 0 ∧ d1d2Π1 ̸= 0 everywhere. So the tangent to {d1Π1 = 0} may not have a

component in d2-direction. But this means that γ⊗
2 (γ1) is constant on U – a contradiction

to the argument in the proof of i). This proves the claim on an open neighborhood of N 1.

On N2, γ⊗
1 is constant and thus smooth on all interior points of N2, i.e., except possibly

on points on N2 ∩ N 1. But these points are isolated by the proof for N1.

In addition, exception points are well-behaved:
Claim. Let γ0

2 be a point at which γ⊗
1 is non-differentiable, i.e. d2

1Π1(γ⊗
1 (γ0

2), γ0
2) = 0. Then,

i) d2γ
⊗
1 converges to minus infinity in γ0

2 .

ii) γ⊗
1 decreases in a neighborhood of γ0

2 .
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Proof of claim.
Consider a point q = (γ⊗

1 (γ0
2), γ0

2) with d2
1Π1(q) = 0, and a locally inverse function γ⊗

2
of the parameterization γ⊗

1 in a neighborhood V . Since d1Π1(q) = 0, d1γ
⊗
2 (γ⊗

1 ) = 0 and
limγ1→γ⊗

1
d1γ

⊗
2 (γ1) = 0. From monotonicity of γ⊗

2 (γ1), either for all γ0
2 ̸= γ2 ∈ V , d1γ

⊗
2 > 0

or for all γ0
2 ̸= γ2 ∈ V , d1γ

⊗
2 < 0. Since d2γ

⊗
1 = 1/d1γ

⊗
2 , either limγ2→γ0

2
d2γ

⊗
1 = ∞ or

limγ2→γ0
2

d2γ
⊗
1 = −∞, but the first case is ruled out by part iii).

ad iii). d2γ
⊗
1 , if defined, is either equal to 0 or γ⊗

1 < γmax. and d2
1Π1 ̸= 0. But 0 < α, so

we may assume γ⊗
1 < γmax. We first prove a preliminary claim.

Claim. Consider a continuously differentiable function f : R2 → R and vectors (1, a)
and (1, b) with 0 < a < b ∈ R. Consider a point p ∈ R2 with Df(p) ̸= 0. If in p the
directional derivatives D(1,a)f and D(1,b)f have the same sign, then all directional derivatives
D(1,x)f with a ≤ x ≤ b have the same sign in p. If in p one of the directional derivatives,
D(1,a)f, D(1,b)f , is equal and the other unequal to zero, then for all x ∈ (a, b) D(1,x)f ̸= 0 and
has the same sign.

Proof of claim. We have Df(p) ̸= 0, hence the gradient grad(f) = (d1f, d2f) does not
vanish at p. Hence,

D(1,x)f = ⟨(1, x), grad(f)⟩ = d1f + x d2f (A136)

is a linear function in x. Subsequently, if d1f + x d2f (as a function in x) has the same sign
for x = a and x = b, it has the same sign for all x ∈ (a, b). This also holds in case one of the
two directional derivatives D(1,a)f, D(1,b)f are zero. This proves the claim.

d2γ
⊗
1 is defined by D(d2γ⊗

1 ,1)(d1Π1) = 0. Thus, it is to show that for κ > α, D(κ,1)(d1Π1) ̸=
0. Since D(κ,1)f = κD(1,1/κ)f , this is equivalent to showing that for 1/κ ∈ (0, 1/α), D(1,1/κ)(d1Π1) ̸=
0. With the above claim it thus remains to show that

d2
1Π1(γ⊗

1 (γ2), γ2) = D(1,0)(d1Π1) ≤ 0 (A137)
and D(1,1/α)(d1Π1) < 0. (A138)

(A138) holds, since D(1,1/α)(d1Π1) = d2
1Π1 + 1

α
(d1d2Π1) < 0 from (A72). (A137) holds since

γ⊗
1 (γ2) is a local maximum..

□

A8 Proof of Lemma 4
Condition (S1) requires that for x < µ, f only has local minima. Condition (S2), on the
other hand, requires that for x > µ, f only has local maxima. Hence, f is increasing on the
interval [a, µ], since otherwise from condition (S3) there was a local maxima below µ. On
the interval [b, µ] there can be at most one local maximum τ , since otherwise there would be
another local minima in between - contradiction.

Subsequently, f is increasing on [a, µ] and decreasing on [µ, b]. Hence, τ is a global
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maximum and from monotonicity we have ∀x < τ : df(x) ≥ 0 and ∀x > τ : df(x) ≤ 0.
But df(x) must not be zero for x ̸= τ , since otherwise from (S1) and (S2) at that point
there would be another local extremum, which would entail another extremum in between -
contradiction.

□

A9 Proof of Lemma 5
If d1Π1 = 0,

d2
1Π1 ≥ 0 (A139)

⇔ −(2d1a
∗ + γ1d

2
1a

∗) ≥ 0 (A140)

⇔ 2d1a
∗ ≤ −γ1(d1a

∗)2
[

2
a∗ − gφ1

ξ2α

τ1

]
(A141)

d1Π1=0⇔ 2 ≤ −γ1
(a − a∗)

γ1

[
2
a∗ − gφ1

ξ2α

τ1

]
(A142)

⇔ 2a∗ ≤ (a − a∗)
[

− 2 + gφ1ξ2 a∗ α

τ1︸ ︷︷ ︸
=(−d2a∗)

]
(A143)

⇔ 2a ≤ (a − a∗)gφ1ξ2(−d2a
∗), (A144)

where we used d1Π1 = 0 ⇔ d1a
∗ = (a−a∗)

γ1
as well as (A67).

Define the RHS of (A144) as

R(γ1, γ2) := (a − a∗)gφ1ξ2(−d2a
∗). (A145)

Claim. It suffices to show d1R < 0.
Proof of claim. If d1R < 0, there can be at most one µ with 2a = R(µ, γ2) and for this µ
(T1) and (T2) hold. In case there is no µ with 2a = R(µ, γ2), we distinguish the following
cases:

1) If there is an interior local maximum, at this interior local maximum we must have
d1Π2

1 < 0. Hence 2a > R on the entire interval and µ = γ
a
1 (γ2) satisfies the condition.

2) If there is no interior local maximum, Π1 increases on the entire interval by Assumption
A6 and Lemma 6, and µ = γmax satisfies the condition. In that case also γa

1 (γ2) = γmax,
because otherwise Π1(γa

1 (γ2), γ2) = 0 would contradict monotonicity of Π1.

3) By Assumption A6 and Lemma 6 there can be no interior local minima.

Claim. d1R < 0.
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Proof of claim. Using (A70) in Proposition 4,

d1R = (−d1a
∗) R

(a − a∗) + d1φ1
R

φ1
− (d1d2a

∗) R

(−d2a∗) (A146)

= R(d1a
∗) ·

[
− 1

(a − a∗) + αξ2 − 1
α

(d1d2a
∗)

(d1a∗)2

]
(A147)

= R(d1a
∗) ·

[
− 1

(a − a∗) + αξ2 − 1
α

α

a∗

(
a∗ξ2

hφ2

τ2
− 2

)]
(A148)

= R(d1a
∗)︸ ︷︷ ︸

>0

·
[
− 1

(a − a∗) + 2
a∗ − ξ2(α + hφ2

τ2
)
]

(A149)

Subsequently

d1R < 0 ⇔ 2a − 3a∗

(a − a∗)a∗ < ξ2

(
α + hφ2

τ2

)
(A150)

⇔ 2a − 3a∗

(a − a∗)︸ ︷︷ ︸
<2

< a∗ξ2︸ ︷︷ ︸
<(−2)

(
α︸︷︷︸

∈(0,1)

+ hφ2

τ2︸ ︷︷ ︸
<(−1)

)
. (A151)

Assumption A5 ensures that the LHS of (A151) is negative, and, thus, under assumption A5
(A151) holds.

□

A10 Proof of Lemma 6
From assumption A6 we have d1Π1(γa

1 (γ2), γ2) > 0 for γ2 = γ∗
2(γmax). From (A71), we know

D(1,1/α)(d1Π1) = d2
1Π1 + 1

α
(d1d2Π1) < 0. (A152)

Hence, d1Π1(γa
1 (γ2), γ2) increases along {a∗ = a} as γ2 decreases, and, thus, d1Π1(γa

1 (γ2), γ2) >
0 for all γ2 ∈ [0, γ∗

2(γmax)].

□

A11 Proof of Proposition 2
ad Existence. We consider insurer 2’s reaction function

γ∗
2 : [γa

1 (0), γmax] → [0, γ∗
2(γmax)] (A153)

γ1 7→ γ∗
2(γ1) (A154)
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and insurer 1’s reaction function

γ⊗
1 : [0, γ∗

2(γmax)] → [γa
1 (0), γmax] (A155)

γ2 7→ γ⊗
1 (γ2). (A156)

From Propositions 4 and 3 we know that γ∗
2 and γ⊗

1 are continuous functions. Subsequently,

(γ∗
2 ◦ γ⊗

1 ) : [0, γ∗
2(γmax)] → [0, γ∗

2(γmax)] (A157)

is a continuous self-mapping on a nonempty, compact and convex set and, hence, by Brouwer’s
fixed point theorem (rf Mas-Colell, Whinston, and Green (1995, p. 952)) there exists a fixed
point. By construction a fixed point either satisfies both FOCs or lies at the boundary.

ad Uniqueness. Since insurer 2’s reaction function γ∗
2 is strictly increasing, there exists

an inverse function, denoted by γ∗−1
1 . From part iii) of Proposition 4 we have for insurer 2’s

reaction function d1γ
∗
2 < 1/α∗, hence, for its inverse function

d2γ
∗−1
1 > α∗. (A158)

At the same time, we know from Proposition 3 that for insurer 1’s reaction function

d2γ
⊗
1 < α⊗. (A159)

Consider the mapping

γ2 7→ γ∗−1
1 (γ2) 7→ a∗(γ∗−1

1 (γ2), γ2). (A160)

Then a∗(γ∗−1
1 (·), ·) as a function of γ2 is increasing in γ2, since

0 < d2a
∗(γ∗−1

1 (γ2), γ2) = (d1a
∗)(d2γ

∗
1) + d2a

∗ ⇔ d2(γ∗
1) >

(−d2a
∗)

(d1a∗) = α, (A161)

⇔ 1
d1(γ∗

2) > α, (A162)

which holds by Proposition 3 part iii).

Likewise, one can consider the analogous mapping using insurer 1’s reaction function

γ2 7→ γ⊗
1 (γ2) 7→ a∗(γ⊗

1 (γ2), γ2). (A163)

Then a∗(γ⊗
1 (·), ·) as a function of γ2 is decreasing in γ2, since

0 > d2a
∗(γ⊗

1 (γ2), γ2) = (d1a
∗)(d2γ

⊗
1 ) + d2a

∗ ⇔ d2(γ⊗
1 ) <

(−d2a
∗)

(d1a∗) = α, (A164)

which holds by Proposition 4 part iii).

Since a∗ values at a point must coincide at a point at which the two function intersect,
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there can be at most one intersection.

□

A12 Proof of Proposition 5
First, at a Nash equilibrium γ⃗ one has d1Π1(γ⃗) ≥ 0 = d2Π2(γ⃗) with d1Π1(γ⃗) > 0 only if
γ1 = γmax. Note furthermore that

d1Π1 ≥ 0 ⇔ (a − a∗) − γ1d1a
∗ ≥ 0 (A165)

d2Π2 = 0 ⇔ (a∗ − a) + γ2d2a
∗ = 0. (A166)

Using Lemma 2 part iii), it thus follows that at a point γ⃗ with d1Π1(γ⃗) ≥ 0 = d2Π2(γ⃗) we
have

1 > α = −d2a
∗

d1a∗ ≥ −d2a
∗

(a − a∗)γ1 = (a∗ − a)
(a − a∗)

γ1

γ2
= Π2

Π1

γ2
1

γ2
2

>
Π2

Π1
, (A167)

where the last inequality follows since ∆γ < 0 ⇔ γ1/γ2 > 1. Hence, (A167) yields (a∗ − a) <
(a − a∗) and Π2 < Π1.

□

A13 Proof of Proposition 6

The optimization problem for a given vector of default risks b⃗0 depends only on g̃(⃗b0) =
p(b0

2 − b0
1)/(1 − b0

1p). Hence, vectors of default risks with the same g̃ yield the same Nash
equilibria.

Claim. For a given pair of default risks (b0
1, b0

2) = b⃗0 with g̃(⃗b0), the set of default risks
b⃗ with the same g̃ is {(

b0
1 − α, b0

2 − (1 − g̃(b0
1, b0

2))α
) ∣∣∣α ∈

[
b0

1 − 1
3 , b0

1

]}
. (A168)

Proof of claim. We have

∂b2 g̃
∣∣∣⃗
b0

= p

1 − b0
1p

(A169)

∂b1 g̃

∣∣∣∣∣⃗
b0

= −p(1 − b0
1p) + p(b0

2 − b0
1)p

(1 − b0
1p)2 (A170)

= −p
(1 − b0

2p)
(1 − b0

1p)2 (A171)

= − p

(1 − b0
1p)

[
1 − p∆b

(1 − b0
1p)︸ ︷︷ ︸

=g̃(⃗b0)

]
(A172)
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−∂b1 g̃

∂b2 g̃

∣∣∣∣∣⃗
b0

= (1 − g̃(⃗b0)) ∈ (0, 1) (A173)

Hence, from the implicit function theorem we know that sets {γ⃗|g̃(γ⃗) = c} are submanifolds
that have (for a given c) the same slope (1 − g̃) at each point. Hence they are straight lines.

□

A14 Proof of Proposition 7
ad i). Let (b∗

1, b∗
2) be a subgame-perfect equilibrium for prescribed roles. If Π∗

2 has multiple
maxima, bs

2 and bl
2 are defined as the smallest and largest b2 at which the maximum is

assumed. The following goes through for bs
2 and bl

2, in particular for bs
2. From the definition

of bs
2

bs
2 = b∗

2 − (1 − g̃(b∗
1, b∗

2)) b∗
1. (A174)

For all λ ∈ [0, b∗
1], all bλ = (λ, bs

2 + (1 − g̃(b∗
1, b∗

2))λ) are also subgame-perfect equilibria with

Π□
i (b∗

1, b∗
2) = Π□

i (bλ
1 , bλ

2) (A175)

for i ∈ {1, 2} from from Proposition 6 ii), since

bλ
2 − b∗

2
bλ

1 − b∗
1

= −(1 − g̃(b∗
1, b∗

2))(b∗
1 − λ)

(λ − b∗
1)

= 1 − g̃(b∗
1, b∗

2). (A176)

Now, suppose b∗
1 > bs

2. Then, for λ = (b∗
1 − bs

2)/(1 − g̃(b∗
1, b∗

2)) > 0, bλ
2 = b∗

1 and

λ − b∗
1 = 1

1 − g̃(b∗
1, b∗

2)
(b∗

1 − (bs
2 + (1 − g̃(b∗

1, b∗
2))b∗

1)) = 1
1 − g̃(b∗

1, b∗
2)

(b∗
1 − b∗

2) < 0, (A177)

hence λ < b∗
1. So in this case, (bλ

1 , bλ
2) offers a profitable deviation for insurer 2 by choosing

λ and thereby reserving roles and capturing profit Π□
1 (bλ

1 , bλ
2) > Π□

2 (bλ
1 , bλ

2) = Π□
2 (b∗

1, b∗
2).

Contradiction.

ad ii). In any subgame-perfect equilibrium, we have

b∗
2 ≤ bl

2 +
(
1 − g̃(0, bl

2)
)

b∗
1 ≤

(
2 − g̃(0, bl

2)
)

bl
2. (A178)

ad Upper Bound. In general, from Proposition 6 we know that pairs of default risks
(b1, b2) with

(b1, b2) = (b∗
1 − z, b∗

2 − (1 − g̃(b∗
1, b∗

2))z), (A179)

z ∈ [b∗
1 − 1

3 , b∗
1], lead to the same Nash equilibria in prices. Hence, the second mover has the
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option to choose a quality b1
2 < b∗

1 with

(b1
2, b∗

1) =
(

1
(1 − g̃) [(1 − g̃)b∗

1 − (b∗
2 − b∗

1)] , b∗
1

)
(A180)

that leads to the same Nash equilibrium in prices, but with reversed roles. By Proposition 5
this is a profitable deviation. This deviation is infeasible if

b∗
2 − b∗

1 > (1 − g̃(b∗
1, b∗

2))b∗
1 (A181)

⇔ b∗
2 > (2 − g̃(b∗

1, b∗
2))b∗

1 (A182)

⇔ b∗
1 <

1
(2 − g̃)︸ ︷︷ ︸

<2−1/8 from Lemma 7

b∗
2︸︷︷︸

<bmax

. (A183)

□

A15 Proof of Proposition 8
”⇐” Similar to the proof of Proposition 7, insurer 1 must choose b1 in such a way that it is
not profitable for insurer 2 to become quality leader. This is the case if Π∗

2 exceeds any profit
insurer 2 can capture with reversed roles. Since from condition (N2) the profit of the quality
leader is increasing in the lower quality, consider the smallest b̄1 such that Π□

1 (0, b̄1) = Π∗
2.

Then, b1 < b̄1 leaves no profitable deviation for the follower.

”⇒” Let (b∗
1, b∗

2) be a subgame-perfect equilibrium with prescribed roles. Then for i ∈
{1, 2} and λ ≤ b∗

1

Π□
i (b∗

1 − λ, b∗
1) = Π□

i (0, b∗
1 − (1 − g̃(b∗

1 − λ, b∗
1))(b∗

1 − λ)) (A184)
= Π□

i (0, λ + g̃(b∗
1 − λ, b∗

1)(b∗
1 − λ)) . (A185)

Suppose b∗
1 > b̄1. Then let λ = b̄1. Hence

Π□
1 (b∗

1 − b̄1, b∗
1) = Π□

1

(
0, b̄1 + g̃(b∗

1 − b̄1, b∗
1)(b∗

1 − b̄1)
)

> Π∗
2 (A186)

by definition of b̄1. Since g̃(b∗
1 − b̄1, b∗

1)(b∗
1 − b̄1) > 0, this is a feasible profitable deviation.

Contradiction.

□
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B Appendix: Additional Results

B1 Optimal Choice of State-Contingent Payments
This section clarifies the contracting problem that has the specified insurance contract as
outcome. Suppose an insurer with default risk b offers a contract that involves a fixed rate γ
for establishing the client-insurer relationship, after which the insurer offers the actuarially
fair price and the coverage is determined endogenously. All payments are due in t = 4. This
includes γ, which, although set ex-ante, is also exchanged in t = 4 and hence only due if the
insurer survives.

Clients chooses payments (y, z) with

y due if x̃ = θ and the insurer survives (B3)
z due if x̃ = θ and the insurer survives (B4)

to maximize expected utility

(1 − p)u
(
θ − y

)
+ p(1 − b)u

(
θ − z

)
+ bpu(θ) (B5)

subject to the constraint

(1 − p)y + p(1 − b)z −
[
γ − bpθ

(1 − bp)

]
(1 − bp) ≥ 0 (B6)

⇔ (1 − p)y + p(1 − b)z ≥ γ(1 − bp) − bpθ. (B7)

(B6) and (B7) offer two views on the constraint. (B7) demands that the expected cash flows
to the insurer (LHS) must be at least as high as the expected fee already agreed upon minus
the expected endowment if the insurer survives. To see the latter part note that

E [x̃|insurer survives] P [insurer survives] = (1 − p)θ + p(1 − b)θ E[x̃]=0= −bpθ (B8)

⇔ E [x̃|insurer survives] = −bpθ

(1 − bp) > 0. (B9)

The risk-averse clients passes the risky endowment to the insurer unless the insurer defaults.

(B6) offers an alternative explanation. Let γnom be the expression in brackets, i.e.

γnom := γ − bpθ

(1 − bp) . (B10)

Then the third term on the LHS of (B6) is the “nominal” fee per client-insurer relationship,
γnom, times the survival probability of the insurer, since only in that case the payment
is actually exchanged. It is subtracted because this fee for establishing the client-insurer
relationship has already been agreed upon, so the insurer already “mentally set it aside”
and subsequently wants to break even in t = 3. Compared to γ, from the definition we
have γ = γnom + bpθ/(1 − bp) < γnom. In view of (B9) the adjustment term, bpθ/(1 − bp),
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is precisely the expected endowment conditional on the survival of the insurer. Since it is
positive, the client claims this extra revenue for himself, rendering γ the “true” fees for the
insurer. In the formulation of the insurer’s constraint in (B6) one assumes that the insurer
chooses “true” fees γ instead of “nominal” ones γnom. This reparametrization will make
subsequent calculations tractable as we will see, while simplifying the intuition.

The following proposition then is a direct result from solving a client’s optimization
problem

max
y,z

{
(1 − p)u(θ − y) + p(1 − b)u(θ − z) + bpu(θ)

∣∣∣∣∣(1 − p)y + p(1 − b)z = γ(1 − bp) − bpθ

}
(B11)

.
Proposition 10. For a given (b, γ), the client optimally chooses

y∗(b, γ) = γ + p(1 − b)θ − pθ

(1 − bp) (B12)

z∗(b, γ) = γ − (1 − p)
(1 − bp)θ − b(1 − bp) − (1 − p)

(1 − b)(1 − bp) θ. (B13)

Let r∗(b, γ) be the payoff a client is left with in an optimal insurance contract unless the
counterparty defaults (residual endowment), i.e. r∗(b, γ) := θ − y∗(b, γ) = θ + z∗(b, γ). Then,
as one would expect from risk aversion, r∗(b, γ) does not depend on the endowment state,
namely

r∗(b, γ) = −γ. (B14)

B2 Market Coverage
An insurance contract (b, γ) is called feasible for a if client a prefers the contract to none.
This translates into the following condition

pua(θ) + (1 − p)ua(θ) ≤ (1 − bp)ua(−γ) + bpua(θ) (B15)
⇔ bp [ua(−γ) − ua(θ)] + ua(θ) − ua(−γ) ≤ p

[
ua(θ) − ua(−γ) + ua(−γ) − ua(θ)

]
(B16)

⇔ (1 − p)
[
ua(θ) − ua(−γ)

]
≤ p(1 − b) [ua(−γ) − ua(θ)] (B17)

(B17) admits an intuitive interpretation: Client a prefers the contract to no insurance, if the
expected utility gain from avoiding the bad endowment in case the seller does not default
(RHS) outweighs the expected utility loss from the fee if the good endowment materializes
(LHS).11

11 Note that from (B17) we also know that for any feasible contract (θ +γ) < 0. (Since −γ < 0 < θ, the LHS
of (B17) is positive, hence, the RHS needs to be positive as well.) Indeed, we already restricted attention
to γ < (−θ) by assumption A3.
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The following proposition characterizes the client that is indifferent between insurance
contract (b, γ) and no insurance.
Proposition 11. Client a is indifferent between (b, γ) and no insurance, if

γ = γexit
a (b) := (−θ) − 1

a
ln
(

K(b) + 1
K(b) + exp(−a(θ − θ))

)
(B18)

with K(b) = (1 − b)p/(1 − p). γexit
a (b) is strictly increasing in a and decreasing in b.

Proof. In light of (B17), a client a is indifferent between buying contract (b, γ) and no
insurance, if

ua(θ) − ua(−γ)
ua(−γ) − ua(θ) = p

1 − p
(1 − b) (B19)

⇔ exp(−aθ) − exp(aγ)
exp(aγ) − exp(−aθ) = K(b) (B20)

⇔ exp(−a(θ + γ)) − 1
1 − exp(−a(θ + γ)) = K(b) (B21)

⇔ exp(−a∆θ) exp(−a(θ + γ)) − 1
1 − exp(−a(θ + γ)) = K(b) (B22)

⇔ exp(−a(θ + γ)) = K(b) + 1
K(b) + exp(−a∆θ) (B23)

⇔ γ = γexit
a (b) := (−θ) − 1

a
ln
(

K(b) + 1
K(b) + exp(−a∆θ)

)
, (B24)

with K(b) := (1 − b)p/(1 − p) and ∆θ := (θ − θ).

ad γexit
a (b) increasing in a. We have

∂γexit
a

∂a
= 1

a

[
1
a

log
(

K(b) + 1
K(b) + exp(−a∆θ)

)
− exp(−a∆θ)

K(b) + exp(−a∆θ)∆θ

]
. (B25)

With

y := 1 − exp(−a∆θ)
K(b) + exp(−a∆θ) (B26)

this reads

∂γexit
a

∂a
= 1

a

[
1
a

ln(1 + y) +
(

y − 1
K(b) + exp(−a∆θ)

)
∆θ

]
(B27)

= 1
a

[
1
a

y

(
log(1 + y)

y
+ a∆θ

)
− 1

K(b) + exp(−a∆θ)∆θ

]
(B28)

=
(1

a

)2 1
K(b) + exp(−a∆θ)

[
(1 − exp(−a∆θ))

(
log(1 + y)

y
+ a∆θ

)
− a∆θ

]
(B29)
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=
(1

a

)2 1
K(b) + exp(−a∆θ)

[
(1 − exp(−a∆θ)) log(1 + y)

y
− exp(−a∆θ)a∆θ

]
(B30)

With x := a∆θ this expression is positive if and only if

exp(x) − 1
x

>
y

log(1 + y) (B31)

⇔ log(1 + y) > y
x

exp(x) − 1 (B32)

⇔ log
(

K(b) + 1
K(b) + exp(−x)

)
>

x

exp(x)
1

K(b) + exp(−x) . (B33)

For x = 0 the LHS and RHS are 0. For x > 0 the derivative w.r.t. x of the LHS reads

∂LHS

∂x
= exp(−x)

K(b) + exp(−x)) , (B34)

while the derivative of the RHS reads

∂RHS

∂x
= exp(−x)

K(b) + exp(−x)

[
(1 − x) + 1

K(b) + exp(−x)
x

exp(x)

]
︸ ︷︷ ︸

<1

. (B35)

To see why the expression in brackets is smaller one, note that

(1 − x) + 1
K(b) + exp(−x)

x

exp(x) < 1 ⇔ 1
K(b) + exp(−x) < exp(x) ⇔ 0 < K(b) exp(x),

which always holds and proves the claim.

ad γexit
a (b) increasing in b. Follows directly, since

∂γexit
a

∂K(b) = 1 − exp(−a∆θ)
(1 + K(b))(K(b) + exp(−a∆θ)) > 0 (B36)

and ∂bK(b) < 0. (B37)

The result is intuitive: the fee at which a client is indifferent between the contract and
no insurance is higher the more risk-averse he is. The next corollary follows as a direct
consequence.
Corollary 1. i) For fixed default probability bi, an insurance contract (bi, γi) is feasible for

client a if γi < γexit
a (bi).

ii) Let aexit(bi, γi) be the client that is indifferent between contract (bi, γi) and no insurance.
For γi outside of [γexit

a (bi), γexit
a (bi)], aexit lies outside of the interval [a, a] and is set to

the respective boundary. Then clients with a < aexit(bi, γi) prefer no insurance.
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iii) If the fee set by the unsafer insurer, γ2, is smaller than γexit
a (b2), then aexit < a and there

is full market coverage.

In the analysis, I restrict attention to the case in which the market is fully covered.12

B3 Formal Results on the Illustration
Lemma 7. i) For γ2 ∈ [0, γmax] define

γ
a
1 (γ2) such that a∗(γa

1 (γ2), γ2) = a (B38)
γa

1 (γ2) such that a∗(γa
1 (γ2), γ2) = a. (B39)

Then γ
a
1 < γa

1 and

γ
a
1 ≤ γmax ⇔ γ2 ≤ γ2 (B40)

with γ2 := argγ{a∗(γmax, γ) = a} = (−θ) − 1
a

log
 1 − g̃(⃗b)

exp(−2) − g̃(⃗b)

 . (B41)

ii) Analogously, for γ1 ∈ [0, γmax] define

γ
a
2 (γ1) such that a∗(γ1, γ

a
2 (γ1)) = a (B42)

γa
2 (γ1) such that a∗(γ1, γa

2 (γ1)) = a (B43)

Then γ
a
2 > γa

2 and

γ
a
2 ≥ 0 ⇔ γ1 ≥ γ1 (B44)

with γ1 := argγ{a∗(γ, 0) = a} = 1
a

log
[
1 + g̃(⃗b) (exp(a(−θ)) − 1)

]
. (B45)

iii) As one would expect from the picture γ2 ≤ γ2 iff γ1 ≥ γ1.

iv) insurer 1 gets the entire market if

γ2 ≤ 0 ⇔ a(−θ) ≤ log
 1 − g̃(⃗b)

exp(−2) − g̃(⃗b)

 . (B46)

12 Later we will introduce γ∗
2(γmax), that is, insurer 2’s best response to the largest possible fee set by insurer

1. insurer 2’s reaction function is increasing. Hence γ∗
2 (γmax) is the largest fee possibly set by insurer

in equilibrium, and if γ∗
2 (γmax) ≤ γexit

a (b2) there is full market coverage anyways. Otherwise, insurer 2’s
reaction function remains unaltered until γexit

a (b2). Above that point, insurer 2 potentially looses market
share “from below” when increasing fees, which may induce him to set fees as best responses. Hence,
we expect the reaction function to change above γexit

a (b2), but it should leave the core of the analysis
unchanged.
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With g̃(⃗b) < 1/8 from assumption A1 and A2,

a(−θ) > log
[

1 − 1
8

exp(−2) − 1
8

]
≈ 4.4, (B47)

ensures that the setup is interesting. This is exactly assumption A4.

Proof. ad i). First of all, we show that for a fixed γ2 ∈ [0, γmax] such γ
a
1 (γ2), γa

1 (γ2) indeed
exist. Whenever clear form the context we suppress the dependence on γ2. Note that for
a ∈ [a, a] g(a, γ2, γ2) = 0, while limγ→∞ g(a, γ, γ2) = limγ→∞

1
c1

(exp(aγ)c2 − 1) = ∞ with
c1 := exp(−a(θ + γ2)) and c2 := exp(−aγ2) independent of γ. Hence, from continuity such
γ

a
1 , γa

1 exist and, since ∂1g > 0, they are also unique.

Claim. γ
a
1 < γa

1

Proof of claim. Since ∂ag < 0 we have g̃(⃗b) = g(a, γa
1 , γ2) = g(a, γ

a
1 , γ2) > g(a, γ

a
1 , γ2).

With ∂1g > 0 this implies γ
a
1 < γa

1 .

For the last part of the statement we have

γ
a
1 ≤ γmax (B48)

⇔ g(a, γmax, γ2) ≥ g̃(⃗b) (B49)
exp(−a(θ + γ2)) exp(−2) − 1

exp(−a(θ + γ2)) − 1 ≥ g̃(⃗b) (B50)

exp(−a(θ + γ2))
(
exp(−2) − g̃(⃗b)

)
≥ 1 − g̃(⃗b) (B51)

−a(θ + γ2) ≥ log
 1 − g̃(⃗b)

exp(−2) − g̃(⃗b)

 (B52)

γ2 ≤ (−θ) − 1
a

log
 1 − g̃(⃗b)

exp(−2) − g̃(⃗b)

 . (B53)

Note that we use g̃(⃗b) < exp(−2) here, which is ensured by assumptions A1 and A2.

ad ii). The argument for existence is analogous to before, so is the argument for γ
a
2 > γa

2
except that now ∂2g < 0. For the last part we have

γ
a
2 ≥ 0 (B54)

⇔ g(a, γ1, 0) ≥ g̃(⃗b) (B55)

⇔ exp(aγ1) − 1
exp(a(−θ)) − 1 ≥ g̃(⃗b) (B56)

⇔ exp(aγ1) ≥ 1 + g̃(⃗b) (exp(a(−θ)) − 1) (B57)

⇔ γ1 ≥ γ1 =: 1
a

log
[
1 + g̃(⃗b) (exp(a(−θ) − 1)

]
. (B58)
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ad iii). We have

γ2 ≥ 0 (B59)

⇔ (−θ) − 1
a

log
 1 − g̃(⃗b)

exp(−2) − g̃(⃗b)

 ≥ 0 (B60)

⇔ log
 1 − g̃(⃗b)

exp(−2) − g̃(⃗b)

 ≤ a(−θ). (B61)

At the same time

γ1 ≤ γmax (B62)
⇔ 2 + log

[
1 + g̃(⃗b) (exp(a(−θ)) − 1)

]
≤ a(−θ) (B63)

⇔ log
[
exp(2)

(
1 + g̃(⃗b) (exp(a(−θ)) − 1)

)]
≤ a(−θ) (B64)

⇔ exp(2)
(
1 + g̃(⃗b) (exp(a(−θ)) − 1)

)
≤ exp(a(−θ)) (B65)

⇔ exp(2)
(
1 − g̃(⃗b)

)
≤ exp(a(−θ))

(
1 − exp(2)g̃(⃗b)

)
(B66)

⇔ 1 − g̃(⃗b)
exp(−2) − g̃(⃗b)

≤ exp(a(−θ)) (B67)

⇔ γ2 ≥ 0. (B68)

ad iv). Since the LHS of (B61) is increasing in g̃(⃗b) and under Assumption A2 g̃(⃗b) < 1/8,

a(−θ) > log
[

1 − 1
8

exp(−2) − 1
8

]
≈ 4.4 (B69)

ensures γ2 ≥ 0 for all admissible parameters and hence renders the setup interesting.

B4 Price Equilibria are Smooth Functions of Qualities
Proposition 12 (Price Equilibrium Smooth Function in Qualities). Without loss of
generality let b1 = 0. Let

D1 :=
{
b2

∣∣∣γ□
1 (b2) ⪇ γmax

}
(B70)

be the set of b2 that lead to price equilibria in the interior. Let

D2 :=
{
b2

∣∣∣γ□
1 (b2) = γmax, (d1Π1)□ ⪈ 0

}
(B71)

be the set of b2 that lead to price equilibria in which insurer 1 chooses the highest admissible
price. The price equilibrium γ⃗□(⃗b) as a function of quality choices b⃗ is a smooth function on
D1 and D2.
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Proof. Let

M := {(b2, γ⃗)|b2 ∈ (0, bmax], 0 ≤ γ2 < γ1 ≤ γmax} (B72)

and

L1 := {d2Π2 = 0} ∩ {d1Π1 = 0} ⊂ M (B73)
L2 := {d2Π2 = 0} ∩ {γ1 = γmax} ⊂ M. (B74)

Then we know that price equilibria are a subset of L := L1 ∪ L2, and, that L1 consists of
price equilibria.

Claim 1. L1 is a smooth submanifold of M and γ⃗□ is smooth on D1.
Proof of claim 1. L1 is the intersection of nullsets of smooth functions

f⃗ :=
(

d2Π2
d1Π1

)
. (B75)

The intersection of two nullsets {f⃗ = 0} is smooth if rank(Df) = 2. If d2
1Π1 ̸= 0,

det(Dγ⃗f) = det
(

d1d2Π2 d2
2Π2

d2
1Π1 d2d1Π1

)
(B76)

= −(d2
2Π2)(d2

1Π1)
[
1 − (d1d2Π2)

(d2
2Π2)

(d2d1Π1)
(d2

1Π1)

]
(B77)

= −(d2
2Π2)(d2

1Π1)
[
1 − (d2γ

⊗
1 )︸ ︷︷ ︸

<1/α

(d1γ
∗
2)︸ ︷︷ ︸

<α

]
(B78)

̸= 0. (B79)

If d2
1Π1 = 0, then d1d2Π1 ̸= 0, and thus

det(Dγ⃗f) = (d1d2Π2)(d2d1Π1) ̸= 0. (B80)

As shown in Proposition 2, for any b⃗ there is exactly one price equilibrium γ⃗□(⃗b) such that
(⃗b, γ⃗□(⃗b)) ∈ L. This defines a function

γ⃗□ : (0, bmax) → L (B81)
b2 7→ γ⃗□(0, b2)) (B82)

with γ⃗□ : Di → Li for i ∈ {1, 2}. Hence, from the Implicit Function Theorem, γ⃗□|D1 is the
smooth parameterization of the submanifold L1.

Claim 2. L2 is a smooth submanifold of M and γ⃗□ is smooth on D2.
Proof of claim 2. The proof proceeds analogously, but now L2 is the intersection of nullsets
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of

g⃗ :=
(

d2Π2
γ1 − γmax

)
, (B83)

with

det(Dγ⃗g) = det
(

d1d2Π2 1
d2

2Π2 0

)
= d2

2Π2 < 0. (B84)
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ONLINE APPENDIX

C Online Appendix: Standard Model of Vertical Product Differ-
entiation Revisited

This section clarifies which assumption in the standard model of vertical product differenti-
ation need to be relaxed to yield endogenous market discipline. I revisit the standard model
(see e.g. Tirole (1988, section 7.5.1)) and lift the assumptions of full market coverage and
quality-invariant costs. The section then shows a refined principle of product differentiation
and in how far upward pressure on qualities emerges.

C1 Setup
Agents. There are two firms that produce the same good, but of different qualities si, i ∈
1, 2 taken from some interval [s, s], s ≥ 0. There is a continuum of consumers who each
demand one unit of the good. Consumers differ in their preference for quality captured by
a taste parameter θ. Specifically, a consumer with taste parameter θ derives linear utility
U(p, s) = θs − p from a good of quality s sold at price p. The taste parameter is assumed to
be uniformly distributed over some interval [θ, θ], θ ≥ 0.

Timing. There are three points in time, t ∈ {0, 1, 2}. At date 0, firms simultaneously
choose qualities si. In t = 1, firms simultaneously choose prices pi upon the publicly observed
quality decisions in the previous period. Lastly, consumers decide from whom to buy in t = 2.
Figure 11 summarizes the simple timing of events.

t = 0

Firms simultaneously
choose qualities

Quality decisions
publicly observed

t = 1

Firms simultaneously
choose prices

t = 2

Consumers decide
from whom to buy

Figure 11: Timeline

If the firms choose the same level of quality, their products can potentially only differ in
the price. Since consumers prefer a lower price, competition solely in prices drives the profit
margins (or markups) to zero. In order to soften price competition, firms have an incentive
to differentiate their products in quality. Since firms are ex-ante symmetric and do not
choose the same qualities in equilibrium, if (s∗

1, s∗
2) is an equilibrium in qualities, so is (s∗

2, s∗
1).

Without loss of generality we assume that firm 1 is the low-quality firm while firm 2 is the
high-quality firm, that is, suppose ∆s := s2 − s1 > 0.13 I am interested in subgame-perfect
Nash equilibria.

13 In the presence of multiple equilibria, a coordination issue emerges and one needs to break the symmetry
between the two firms somehow. Here, the symmetry is broken by assigning the role of quality-leader
ex-ante.
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C2 Maximal Differentiation under Full Market Coverage and Con-
stant Costs

We briefly review the driving forces at play under the standard assumptions.14 The standard
model assumes that per-unit costs c are the same for all qualities. Additionally the following
restrictions on parameters are imposed:

θ = θ + 1 (C0)
θ > 2θ (A1)

c + 1
3(s − s)(θ − 2θ) ≤ θs. (A2)

Since (C0) and (A1) together imply θ ∈ [0, 1), they can be understood as demanding that,
relative to θ, there is sufficient consumer heterogeneity. As will become clear from the
prices derived below, the LHS of (A2) is the highest price the low-quality firm might set in
equilibrium. The RHS is the lowest possible valuation a consumer can have for the low-quality
product. Hence, (A2) ensures that all consumers buy the good (full market coverage).

The standard result states that given quality choices s1 < s2 made in t = 0, the prices

p1(s1, s2) = c + 1
3∆s(θ − 2θ) and p2(s1, s2) = c + 1

3∆s(2θ − θ) (C3)

form a Nash equilibrium in t = 1. In t = 0, there are two pure-strategy Nash equilibria
in the choice of qualities and both exhibit maximal product differentiation. Specifically, for
s1 < s2, firm 1 chooses the lowest possible quality s and firm 2 chooses the highest possible
quality s. Reversing the role of the two firms yields the other equilibrium.

The intuition of the result is as follows: In t = 1, when qualities s1 < s2 are already
chosen, the consumer who is indifferent between the two firms is characterized by a taste
parameter θ̂ such that θ̂s1 − p1 = θ̂s2 − p2, hence θ̂ = (p2 − p1)/∆s. Firm 1 receives the
consumers with θ below the threshold θ̂, while firm 2 receives those with θ > θ̂. Firm’s
profits Π1 and Π2 take the form

Π1(p1, p2) = (p1 − c)︸ ︷︷ ︸
profit margin

·
[

(p2 − p1)
∆s

− θ

]
︸ ︷︷ ︸

market share

, Π2(p1, p2) = (p2 − c) ·
[
θ − (p2 − p1)

∆s

]
. (C4)

In t = 1, each firm chooses a price, taking the price of the other firm as given, in order
to maximize profits. In t = 0, each firm takes into account the Nash equilibrium in prices
in the next period, which gives rise to profits as a function of quality choices, specifically
Π1(s1, s2) = 1

9∆s(θ − 2θ)2 and Π2(s1, s2) = 1
9∆s(2θ − θ)2. As profits are increasing in the

quality differential, firm 1 chooses the lowest possible quality, while firm 2 chooses the highest
possible quality. Note that as a direct consequence the quality-leader enjoys the larger profits

14 as in section 7.5.1 in Tirole (1988)
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- an important observation for later.

The driving forces behind the result of maximal product differentiation are twofold.
Firstly, assumption (A2) ensures that the entire market is always covered. Whatever quality
choices firms make in t = 0 under (A2), they will always be able to optimally respond with
their price choices in such a way that the indifferent consumer is left unchanged.15 This
implies that the quantity effect cancels out and only the margin effect is left. For firm 1, for
example, we have

∂Π1(s1)
∂s1

= ∂(p1(s1) − c)
∂s1︸ ︷︷ ︸

margin effect

[θ̂(s1) − θ]︸ ︷︷ ︸
>0

+(p1(s1) − c) ∂[θ̂(s1) − θ]
∂s1︸ ︷︷ ︸

=0, quantity effect

. (C5)

Since prices positively depend on the amount of product differentiation, both firms have an
incentive to implement maximal product differentiation. Crucial for this result is that there
is no upper limit on the price. For both firms it is optimal to increase prices in response
to more product differentiation, keeping the indifferent consumer and as a result the market
shares constant. Especially for the high-quality firm which charges the higher price, this
means that potentially very large (also relative to costs) prices are set without the risk of
loosing customers. Secondly, higher quality is not associated with higher costs.

C3 No Full Market Coverage and Costs Varying with Quality
Let’s consider the following generalized setup. Suppose costs are increasing in quality, that
is, suppose there is a smooth “cost” function c : R+ → R+ with c′ ≥ 0 and c′′ ≥ 0 where the
argument is thought of as quality. A firm incurs higher costs when choosing a higher quality,
and, at a higher level of quality, increasing quality even further is even more costly.

We lift the assumption that the entire market is covered, i.e. we do not assume (C0), (A1)
and (A2) anymore. In the absence of (A2), the symmetry between the two firms vanishes,
since firm 1 needs to take into account that at too unfavorable quality and price choices,
some consumers might not buy at all. Specifically, a consumer θ0 is indifferent between not
buying at all and buying from the low-quality firm if p1 = θ0s1. Firm 1 faces only the market
segment from θ0 upwards, which alters its optimization problem to

max
p1

{
(p1 − c(s1))

[
(p2 − p1)

∆s
− max

{
θ,

p1

s1

}]}
. (C6)

In order to avoid cumbersome case distinctions that do not seem to carry further intuition,
we ensure that p1/s1 ≥ θ by assuming θ = 0.

Attention is restricted to pairs of qualities (s1, s2) that satisfy the following assumptions.
Assumption C1. c(s1)/s1 < θ/2

15 Formally, this can be seen when we insert equilibrium prices into the formula for the indifferent consumer
and obtain θ̂(s1, s2) = 1

3 (θ + θ), independent of s1, s2.
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Assumption C2. c(s2)/s2 < 2θ
Assumption C3.

∆c

∆s
:= c(s2) − c(s1)

∆s
∈
(

2c(s1)
s1

− θ, 2θ − c(s2)
s2

)
(C7)

Assumption C3 ensures that the markups of both firms are positive. In particular, as
will become clear from the equilibrium prices derived below, firm 1’s markup will be positive
if and only if ∆c/∆s > 2c(s1)/s1 − θ, while firms 2’s markup will be positive if and only if
∆c/∆s < 2θ − c(s2)/s2. Assumption C3 is a condition on the difference in costs relative to
the difference in quality chosen by the two firms. It means that some combinations of (s1, s2)
kick one firm out of the market, which makes it plausible how a firm may exert a “pull effect”
on the quality decisions of the other firm, as shown below. Assumptions C1 and C2 mandate
that the upper and lower boundary of the admissible interval in assumption C3 are positive
and negative, respectively. Since ∆c/∆s is positive, assumption C2 is a necessary condition,
while assumption C1 is only a sufficient condition for positive profit margins of firm 2 and 1
respectively.16 17 Assumptions C1 - C3 can be ensured by a large enough θ, hence sufficient
consumer heterogeneity.

Refined Principle of Product Differentiation
The Nash equilibrium in prices takes the following form.
Proposition 13. Given quality choices (s1, s2) that satisfy assumptions C1 - C3, the follow-
ing is a Nash equilibrium in prices in t = 1:

p1(s1, s2) = s1

3s2 + ∆s

[
c(s2) + 2s2

s1
c(s1) + θ∆s

]
(C8)

= c(s1) + s1

3s2 + ∆s

[
∆c + ∆s

(
−2c(s1)

s1
+ θ

)]
(C9)

p2(s1, s2) = s2

3s2 + ∆s

[
2c(s2) + c(s1) + 2θ∆s

]
(C10)

= c(s2) + s2

3s2 + ∆s

[
−∆c + ∆s

(
−c(s2)

s2
+ 2θ

)]
(C11)

Proof. The idea of the proof is analogous to the proof of the standard result presented above
in the text. The details are presented in online appendix C5.

As before, we are interested in whether the quality-leader has higher profits than the
low-quality firm. The following corollary shows that this is the case as long as ∆c/∆s lies

16 If c(0) is normalized to zero, the function x 7→ c(x)/x is increasing for positive x, since for x > 0 we
have ∂

∂x

(
c(x)

x

)
= 1

x

[
c′(x) − c(x)−c(0)

(x−0)

]
≥ 0 from convexity. But we do not make this assumption here in

general as it would rule out fixed costs.
17 Constant costs imply ∆c/∆s = 0, hence, satisfy assumption C3 under assumptions C1 and C2.
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closer to the lower than to the upper boundary of the admissible interval.
Corollary 2. i) Firm 2 enjoys larger profit margins than firm 1, i.e. p1−c(s1) < p2−c(s2)

if and only if

s1

[
∆c

∆s
−
(

2c(s1)
s1

− θ

)]
< s2

[(
2θ − c(s2)

s2

)
− ∆c

∆s

]
.

ii) Firm 2 enjoys larger market shares than firm 1, i.e. θ̂ − θ0 < θ − θ̂ if and only if[
∆c

∆s
−
(

2c(s1)
s1

− θ

)]
<

[(
2θ − c(s2)

s2

)
− ∆c

∆s

]
. (B4)

iii) If firm 2 has the higher market share, i.e. if (B4) is satisfied, it also has the higher profit
margin and, as a result, higher profits.

Proof. Follows directly from plugging in the respective formulas.

When both firms anticipate the equilibrium in prices for given quality choices, one can
express profits as a function of quality choices:

Π1(s1, s2) = ∆s
s2

s1

[
s1

3s2 + ∆s

(
c(s2) − c(s1)

∆s
−
(

2c(s1)
s1

− θ

))]2

(C12)

Π2(s1, s2) = ∆s

[
s2

3s2 + ∆s

(
2θ − c(s2)

s2
− c(s2) − c(s1)

∆s

)]2

. (C13)

In the original setup, profits were increasing in the quality differential. Here, in (C12) as well
as in (C13), the first factor increases as products become more differentiated, but the effect
on the expressions in brackets is unclear. Hence, an interior Nash equilibrium in qualities
may be possible. Specifying conditions on the functional form of c(·) that ensure existence of
an interior Nash equilibrium does not promise interesting economic results because of lenghty
and tedious expressions, and I do not have a general existence proof. The following result,
however, derives properties of a Nash equilibrium in qualities and shows a refined principle
of product differentiation.
Proposition 14. a) At any point (s1, s2) that satisfies assumption C1 - C3

ii) if marginal costs for extra quality are small for firm 1, firm 1 wants to increase
quality. Specifically,

c′(s1) < 2c(s1)
s1

− θ ⇒ ∂Π1(s1, s2)
∂s1

> 0. (C14)

iiii) For firm 2, if marginal costs for extra quality are large, decreasing quality increases
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profits. Specifically,

2θ − c(s2)
s2

< c′(s2) ⇒ ∂Π2(s1, s2)
∂s2

< 0. (C15)

b) For a sequence of (s1, s2) where each pair of qualities satisfies assumptions C1 - C3 and
stays distinct while converging to some s0, i.e. ∆s going to zero, we have

lim
s1,s2→s0

∂Π1(s1, s2)
∂s1

= −1
9

(
c′(s0) − 2c(s0)

s0
+ θ

)2

≤ 0, (C16)

lim
s1,s2→s0

∂Π2(s1, s2)
∂s2

= 1
9

(
2θ − c(s0)

s0
− c′(s0)

)2

≥ 0. (C17)

Proof. See online appendix C6.

The following observation follows. The threshold c(s1)/s1−θ in (C14) indeed also depends
on s1. It can be meaningfully interpreted, since by assumption C3, ∆c/∆s needs to lie above
this threshold. Analogously for the threshold in (C15).

Proposition 4 part b) shows that, if qualities are very close together, i.e. when ∆s is
small, firms want to differentiate qualities. In other words, the same effect as in the original
model prevails, but now it is only an “infinitesimal” effect as it holds for small differences in
quality. At the same time, Proposition 4 part a) demonstrates that high or low marginal costs
for firm 2 or 1, respectively, can be the driver behind a tendency to move qualities closer
together. From Proposition 4 part aii) the quality-leader wants to provide only as much
quality as “necessary”, while from part ai) the low-quality firm provides “as much quality as
feasible” with respect to the increasing marginal costs of quality. Together the forces from
part a) and b) act like pull and push factors keeping the qualities of the two firms somewhat
close together, but never equal.

C4 Upward Pressure on Qualities
Two questions arise naturally. Firstly, since the low-quality firm now experiences competition
from above (the high-quality firm) and below (the option not to buy), does that exert a pull
effect on the quality choice of firm 1? Secondly, when the leadership position in quality is
the more attractive one, can the threat to be overtaken by the other firm induce the quality-
leader to set high qualities whatsoever? The interplay of these forces would produce upward
pressure on qualities.

The following proposition and subsequent discussion clarifies in how far there may be a
pull effect on the quality choice of the low-quality firm.
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Proposition 15. At any point (s1, s2) that satisfies assumptions C1 - C3, if

K := θ (s2 − 2s1)︸ ︷︷ ︸
=:A

+
(

2s2 − ∆s
s1

s2

)
︸ ︷︷ ︸

>0

[
c(s1)

s1
− c′(s1)

]
︸ ︷︷ ︸

=:B

+ ∆s
s1

s2︸ ︷︷ ︸
>0

[
∆c

∆s
− c′(s1)

]
︸ ︷︷ ︸

=:C

+ 2∆s︸ ︷︷ ︸
>0

(−c′(s1))︸ ︷︷ ︸
=:D

is non-negative, then ∂Π1/∂s1 > 0 and subsequently the point can not be an equilibrium.

Proof. See online appendix C7.

We discuss the consequences for the special case of constant costs c ∈ R+, quadratic costs
and the general case. For constant costs, K reduces to θ(s2 − 2s1) + (2s2 − (∆s)s1/s2) c/s1.
For s2 ≥ 2s1 this expression is positive, subsequently the point can not be an equilibrium.
This admits the following interpretation: In order for an equilibrium to exist, the low-quality
firm needs to choose s1 sufficiently close to the quality of firm 2, i.e. larger than 0.5 s2 (pull
effect).18

For quadratic costs, which play a prominent role in the literature on the subject, say c(s) =
τs2, K reduces to K = θ(s2 − 2s1) − τs1 (5s2 − 3s1)︸ ︷︷ ︸

>0

. So K ≥ 0 requires (s2 − 2s1) > 0 and is

fulfilled if 0 ≤ τ < θ(s2 − 2s1)/(5s2 − 3s1). This again has an intuitive interpretation when
we think of the costs c(s) = τs2 as a quadratic “error term” to zero costs with “intensity” τ .
A non-negative K requires that the condition s2 ≥ 2s1, which precludes an equilibrium for
zero costs, still suffices to preclude existence for quadratic costs provided the “intensity” τ
of the “error term” is below some threshold.
For the general case, K consists of “drivers” A, B, C and D, as defined above, with positive
weights. For a fixed s2, each driver is monotone in s1 and the level of s1 determines whether
the corresponding driver increases or decreases K, i.e. whether it exerts upward pressure or
not. Specifically, A is positive iff s1 < 1/2 s2, B is positive iff s1 is smaller than s0 with s0
such that c′(s0) = c(s0)/s0, C is positive for s1 ̸= s2 and D is always negative.

That the quality-leader exerts a “pull effect” on the low-quality firm upwards rather than
the other way around is intuitive also from a different point of view. Already in the original
model the quality-leader enjoys greater profits. Albeit the fact that the low-quality firm will
subsequently choose the lowest quality there, this indicates that there is room for a race for
the “pole position in quality”, as also noted in Tirole (1988, p. 297). Corollary 2 shows that
this result persists in the generalized setup under the condition that the relation ∆c/∆s may
not be too large. Specifically, if ∆c/∆s lies closer to the lower than to the upper boundary
of the admissible interval, the lead position in quality is the more attractive one and the
quality-leader will try to keep this “pole position”. It seems plausible that the quality-leader
is aware of the risk of being overtaken by the other firm at too low quality choices. Then

18 In the case of constant costs, one can easily show that firm 2 chooses the maximal quality. This is intuitive,
as higher quality is not associated with higher costs in this case. The simplification of constant costs helps
show the key idea of a “pull” effect exerted on the low-quality firm most clearly, but it also eliminates the
force that previously counteracted the quality-leader’s incentive to choose the extreme quality.
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the risk of being overtaken may exert upward pressure on the quality choices when moving
qualities closer together. This is shown formally in the sequel.

To capture this, suppose we break the symmetry between the two firms not, as done
so far, by assigning the roles of quality-leader and quality-follower ex-ante, but instead by
making the quality choice sequential. We call the new setup sequential game without assigned
roles and assume firm 2 has a first mover advantage in the choice of quality. Specifically, we
introduce an additional time period t = (−1) in which firm 2 chooses its quality, while firm
1, upon observing firm 2’s decision, continues to choose its quality in t = 0. The rest remains
as before.

In t = 0, firm 1 can either “adapt” by actually becoming the quality-follower or overtake
firm 2’s leadership position by choosing a higher quality. We ensure assumptions C1 - C3
and (B4) for all quality pairs by assuming that for all s in [s, s]

c(s)
s

<
θ

2 (B1’)

c′(s) ∈
(

2 sup
t

c(t)
t

− θ, 2θ − inf
t

c(t)
t

)
(B3’)

θ − 2 inf
t

c(t)
t

+ c′(s) < 2θ − sup
t

c(t)
t

− c′(s). (B4’)

(B1’) - (B4’) relate marginal costs of a further quality improvement to θ, the marginal
willingness to pay of the most quality-sensitive consumer for a quality improvement. Note
that with c(s2) − c(s1) =

∫ s2
s1

c′(t)dt, (B3’) yields assumption C3 for all s ∈ [s, s], while (B4’)
ensures condition (B4) for all qualities. Conditions (B1’), (B3’) and (B4’) can be ensured if
θ is large enough.19

Hence, the quality-leader always enjoys larger profits, which enables us to derive the
following proposition.
Proposition 16. A necessary condition for some (s1, s2) to be a subgame-perfect Nash equi-
librium in the sequential game without assigned roles, is that

s2 >
4
5s. (C18)

Proof. As before, the main idea is presented below in the text, while some calculations are
relegated to online appendix C8.

The intuition of the result is as follows: Suppose s1 < s2 is a Nash equilibrium in
the sequential game without assigned roles. In that case one must not be able to find a

19 In the same spirit as in the original model, this can be interpreted as a condition on sufficient consumer
heterogeneity, and thereby neatly connects to the set of assumptions made in the original model. There,
(C0) and (A1) demand sufficient consumer heterogeneity while (A2) demands full market coverage; here,
only sufficient consumer heterogeneity is needed.
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profitable deviation for the quality-follower, that is, no s3 with s2 < s3 ≤ s such that the
profit when taking the lead position in quality, exceeds the profit when choosing the optimal
quality as quality-follower, that is no s3 Π2(s2, s3) > Π1(s1, s2). As shown in the appendix,
s3 = (s2

2 + s1s2 − s2
1)/s2 is such an profitable deviation, which is infeasible if (4/5)s < s2.

Proposition 16 shows that in the sequential game without assigned roles, a necessary
condition for a Nash equilibrium to exist is that the quality-leader chooses a quality at least
as high as 80% of the maximal quality. In other words, the threat of being overtaken and
loosing the leadership position in quality induces the first mover to pick a high quality even
in an environment where costs are increasing and convex in the level of quality.

The interplay between a pull effect on the quality choice of the low-quality firm and
pressure on the high-quality firm not to leave too much room quality-wise above, gives rise
to upward pressure on the quality choices.

C5 Proof of Proposition 13
The full maximization problem reads

max
p1

Π1(p1, p2) = max
p1

{
(p1 − c(s1))

[
(p2 − p1)

∆s
− p1

s1

]}
(C19)

max
p2

Π2(p1, p2) = max
p2

{
(p2 − c(s2))

[
θ − (p2 − p1)

∆s

]}
, (C20)

with the additional conditions

(p1 − c(s1)) ≥ 0 positive profit margin of firm 1 (Bi)
(p2 − c(s2)) ≥ 0 positive profit margin of firm 2 (Bii)

p2 − p1

∆s
≥ p1

s1
positive market share of firm 1 (Biii)

θ ≥ p2 − p1

∆s
positive market share of firm 2 (Biv)

p1

s1
≥ θ firm 1’s market share takes the form (p2 − p1)

∆s
− p1

s1
(Bv)

p2 − p1

∆s
≥ p2

s2
firm 2’s market share takes the form θ − (p2 − p1)

∆s
. (Bvi)

I first solve the unconstrained maximization problem and then verify that the (unique) solu-
tion satisfies (Bi) - (Bvi). Solving the reaction functions

p1 = R1(p2) := 1
2

[
p2

s1

s2
+ c(s1)

]
(C21)

p2 = R2(p1) := 1
2
[
p1 + c(s2) + θ∆s

]
(C22)

yields the formula for the prices.
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It remains to check whether conditions (Bi) - (Bvi) hold. (Bi) and (Bii) are ensured by
(C3) as argued in the text. Since plugging in the respective formulas directly yields

θ̂ − θ0 = s2

(3s2 + ∆s)

[
∆c

∆s
−
(

2c(s1)
s1

− θ

)]
(C23)

θ − θ̂ = s2

(3s2 + ∆s)

[(
2θ − c(s2)

s2

)
− ∆c

∆s

]
, (C24)

(C3) ensures (Biii) and (Biv). (Bv) follows directly from the assumption θ = 0, since prices
are positive. It remains to show (Bvi), which is a little more cumbersome. As a first step
note that (Bvi) follows if we know that

p2

p1
≥ s2

s1
, (C25)

since then

p2s1 ≥ p1s2 (C26)
⇔ p2s1 − p2s2 + p2s2 ≥ p1s2 (C27)

⇔ −p2∆s + s2∆p ≥ 0 (C28)

⇔ ∆p

∆s
≥ p2

s2
. (C29)

It remains to show that (C25) holds. To that end we have

p2

p1
≥ s2

s1
(C30)

⇔
s2

3s2+∆s

[
2c(s2) + c(s1) + 2θ∆s

]
s1

3s2+∆s

[
c(s2) + 2 s2

s1
c(s1) + θ∆s

] ≥ s2

s1
(C31)

⇔ 2c(s2) + c(s1) + 2θ∆s

c(s2) + 2 s2
s1

c(s1) + θ∆s
≥ 1 (C32)

⇔ c(s2) + c(s1)
(

1 − 2s2

s1

)
︸ ︷︷ ︸

=− (s2+∆s)
s1

+θ∆s ≥ 0 (C33)

⇔ c(s2) − s2

s1
c(s1) + c(s1)

s1
(−∆s + 2∆s) + ∆s

[
θ − 2c(s1)

s1

]
≥ 0 (C34)

⇔ ∆c

∆s
≥ 2c(s1)

s1
− θ, (C35)

which is ensured by (C3).

□
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C6 Proof of Proposition 14
Part a) follows immediately, if we know the following expressions for the derivatives of the
profits. With α and β the expressions inside the squared brackets in (C12) and (C13), namely

α(s1, s2) := s1

3s2 + ∆s

(
∆c

∆s
−
(

2c(s1)
s1

− θ

))
(C36)

β(s1, s2) := s2

3s2 + ∆s

(
2θ − c(s2)

s2
− ∆c

∆s

)
. (C37)

we claim that

∂Π1(s1, s2)
∂s1

= −s2
2

s2
1
α2 + 2α

s2

s1
∆s

∂α(s1, s2)
∂s1

(C38)

= s2

s1

α

(3s2 + ∆s)2︸ ︷︷ ︸
>0

[
(2∆s(3s2 + ∆s) + 3s1s2)

(
∆c

∆s
− c′(s1)

)
︸ ︷︷ ︸
≥0 from convexity

(C39)

+s2(3s2 + ∆s)
(

2c(s1)
s1

− θ − c′(s1)
)

+ 4s2∆s

(
2θ − c(s2)

s2
− c′(s1)

)
︸ ︷︷ ︸

>0 from (C3)

]
,

∂Π2(s1, s2)
∂s2

= β2 + 2β∆s
∂β(s1, s2)

∂s2
(C40)

= β

(3s2 + ∆s)2︸ ︷︷ ︸
>0

[
(3s2 + ∆s)(s2 + 2∆s)

(
∆c

∆s
− c′(s2)

)
︸ ︷︷ ︸
≤0 from convexity

(C41)

+4s1∆s

(
2c(s1)

s1
− θ − ∆c

∆s

)
︸ ︷︷ ︸

<0 from (C3)

+(3s2 + ∆s)s2

(
2θ − c(s2)

s2
− c′(s2)

)]
.

To show this, note that for firm 1 the derivative can be written as follows

∂Π1(s1, s2)
∂s1

= −s2
2

s2
1
α2 + 2α

s2

s1
∆s

∂α(s1, s2)
∂s1

(C42)

Def α= s2

s1

α

(3s2 + ∆s)2

[
− s2

s1
(3s2 + ∆s)s1

(
∆c

∆s
−
(

2c(s1)
s1

− θ

))

+2∆s
∂α(s1, s2)

∂s1
(3s2 + ∆s)2

]
. (C43)

For the derivative of α(s1, s2) w.r.t. s1 it proves helpful to use two versions of the formula
for α when applying the product rule, namely

α(s1, s2) := 1
3s2 + ∆s

(
s1

∆c

∆s
−
(
2c(s1) − s1θ

))
(C44)
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= 1
3s2 + ∆s

(
s1

∆s
c(s2) − s2 + ∆s

∆s
c(s1) + s1θ

)
. (C45)

Then

∂α(s1, s2)
∂s1

(3s2 + ∆s)2 =
[
θ + s2

(∆s)2 c(s2) − s2

(∆s)2 c(s1) − s2 + ∆s

∆s
c′(s1)

]
(3s2 + ∆s)

+s1θ − 2c(s1) + s1
∆c

∆s

= 4θs2 − 2c(s1) + (s2 + ∆s)(3s2 + ∆s)
∆s

[
∆c

∆s
− c′(s1)

]

−(3s2 + ∆s)∆c

∆s
+ s1

∆c

∆s

= (s2 + ∆s)(3s2 + ∆s)
∆s

[
∆c

∆s
− c′(s1)

]

+ [−(3s2 + ∆s) + s1 + 2∆s]︸ ︷︷ ︸
=−2s2

∆c

∆s
+ 2s2

(
2θ − c(s2)

s2

)

= (s2 + ∆s)(3s2 + ∆s)
∆s

[
∆c

∆s
− c′(s1)

]
+ 2s2

[
2θ − c(s2)

s2
− ∆c

∆s

]
.

Hence together with (C43)

∂Π1(s1, s2)
∂s1

= s2

s1

α

(3s2 + ∆s)2

[
s2(3s2 + ∆s)

(
2c(s1)

s1
− θ − ∆c

∆s

)
(C46)

+2(s2 + ∆s)(3s2 + ∆s)
(

∆c

∆s
− c′(s1)

)

+(2∆s)2s2

(
2θ − c(s2)

s2
− ∆c

∆s

)]

= s2

s1

α

(3s2 + ∆s)2

[
s2∆s

(
2c(s1)

s1
− θ

)
+ s2∆s

(
2θ − c(s2)

s2

)
(C47)

−s2(3s2 + ∆s)∆c

∆s
+ 2s2

[
3s2

(
2c(s1)

s1
− θ

)
+ 3∆s

(
2θ − c(s2)

s2

)]

−4s2∆s
∆c

∆s
− 2(s2 + ∆s)(3s2 + ∆s)c′(s1)

+2s2(3s2 + ∆s)∆c

∆s
+ 2∆s(3s2 + ∆s)∆c

∆s

]

= s2

s1

α

(3s2 + ∆s)2

[
2∆s(3s2 + ∆s)

(
∆c

∆s
− c′(s1)

)
(C48)

−2s2(3s2 + ∆s)c′(s1) + s2(3s2 + ∆s)
(

2c(s1)
s1

− θ

)
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+s2 (3∆s + ∆s)
(

2θ − c(s2)
s2

)
− 4s2∆s

∆c

∆s
+ s2(3s2 + ∆s)∆c

∆s

]

= s2

s1

α

(3s2 + ∆s)2

[
2∆s(3s2 + ∆s)

(
∆c

∆s
− c′(s1)

)
(C49)

+s2(3s2 + ∆s)
(

2c(s1)
s1

− θ − c′(s1)
)

+s2(3s2 + ∆s)
(

2θ − c(s2)
s2

− c′(s1)
)

+ (4s2∆s − s2(3s2 + ∆s)︸ ︷︷ ︸
=−3s1s2

(
2θ − c(s2)

s2
− ∆c

∆s

)]

= s2

s1

α

(3s2 + ∆s)2

[
2∆s(3s2 + ∆s)

(
∆c

∆s
− c′(s1)

)
(C50)

+s2(3s2 + ∆s)
(

2c(s1)
s1

− θ − c′(s1)
)

+s2(3s2 + ∆s)
(

2θ − c(s2)
s2

− c′(s1)
)

−3s1s2

(
2θ − c(s2)

s2
− c′(s1)

)
+ 3s1s2

(
∆c

∆s
− c′(s1)

)]

= s2

s1

α

(3s2 + ∆s)2

[
(2∆s(3s2 + ∆s) + 3s1s2)

(
∆c

∆s
− c′(s1)

)
(C51)

+s2(3s2 + ∆s)
(

2c(s1)
s1

− θ − c′(s1)
)

+
(
3s2

2 + s2∆s − 3s1s2
)

︸ ︷︷ ︸
=4s2∆s

(
2θ − c(s2)

s2
− c′(s1)

)]
.

For firm 2 the proof follows analogous steps but now

∂Π2(s1, s2)
∂s2

= β2 + 2β∆s
∂β(s1, s2)

∂s2
(C52)

Def β= β

(3s2 + ∆s)2

[
(3s2 + ∆s)s2

(
2θ − c(s2)

s2
− ∆c

∆s

)

+2∆s
∂β(s1, s2)

∂s2
(3s2 + ∆s)2

]
,

the two versions of β read

β(s1, s2) := 1
3s2 + ∆s

(
2s2θ − c(s2) − s2

c(s2) − c(s1)
∆s

)
(C53)

= 1
3s2 + ∆s

(
2s2θ + s2

∆s
c(s1) − s2 + ∆s

∆s
c(s2)

)
, (C54)
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for the derivative of β w.r.t. s2 we have

∂β(s1, s2)
∂s2

(3s2 + ∆s)2 =
[
2θ − s1

(∆s)2 c(s1) + s1

(∆s)2 c(s2) − s2 + ∆s

∆s
c′(s2)

]
(3s2 + ∆s)

−4
(

2θs2 − c(s2) − s2
∆c

∆s

)

= −(s2 + ∆s)(3s2 + ∆s)
∆s

c′(s2) + s1(3s2 + ∆s) + 4s2∆s

∆s︸ ︷︷ ︸
= (s2+∆s)(3s2−∆s)

∆s

(
∆c

∆s

)

−2θs1 + 4c(s2)

= (s2 + ∆s)(3s2 + ∆s)
∆s

(
∆c

∆s
− c′(s2)

)
− 2(s2 + ∆s)∆s

∆s

(
∆c

∆s

)
−2θs1 + 4c(s2)

= (s2 + ∆s)(3s2 + ∆s)
∆s

(
∆c

∆s
− c′(s2)

)

−2s1

(
θ + ∆c

∆s

)
+2(2s1)

∆c

∆s
− 4s2

∆c

∆s
+ 4c(s2)︸ ︷︷ ︸

=−4∆c+4c(s2)=4c(s1)

= (s2 + ∆s)(3s2 + ∆s)
∆s

(
∆c

∆s
− c′(s2)

)
+ 2s1

(
2c(s1)

s1
− θ − ∆c

∆s

)

and together with (C53) this yields

∂Π2(s1, s2)
∂s2

= β

(3s2 + ∆s)2

[
(3s2 + ∆s)s2

(
2θ − c(s2)

s2
− ∆c

∆s

)
(C55)

−2(s2 + ∆s)(3s2 + ∆s)
(

c′(s2) − ∆c

∆s

)
+ (2∆s)2s1

(
2c(s1)

s1
− θ − ∆c

∆s

)]

= β

(3s2 + ∆s)2

[
(3s2 + ∆s)s2

(
2θ − c(s2)

s2
− c′(s2)

)
(C56)

−s2(3s2 + ∆s)∆c

∆s
+ s2(3s2 + ∆s)c′(s2)

+(2s2 + 2∆s)(3s2 + ∆s)
(

∆c

∆s
− c′(s2)

)
+ 4s1∆s

(
2c(s1)

s1
− θ − ∆c

∆s

)]

= β

(3s2 + ∆s)2

[
(3s2 + ∆s)s2

(
2θ − c(s2)

s2
− c′(s2)

)
(C57)

+(3s2 + ∆s)(s2 + 2∆s)
(

∆c

∆s
− c′(s2)

)
+ 4s1∆s

(
2c(s1)

s1
− θ − ∆c

∆s

)]
.
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For the limits in part b) note that for firm 2, if the limit exists, (C38) implies

lim
s1,s2→s0

∂Π1(s1, s2)
∂s1

= − lim
s1,s2→s0

α(s1, s2)2 + lim
s1,s2→s0

2α∆s
∂α(s1, s2)

∂s1
, (C58)

with

lim
s1,s2→s0

α(s1, s2) = 1
3

(
c′(s0) − 2c(s0)

s0
+ θ

)
=: K1

lim
s1,s2→s0

∂α(s1, s2)
∂s1

= lim
s1,s2→s0

[
(s2 + ∆s)(3s2 + ∆s)

∆s

(
∆c

∆s
− c′(s1)

)
︸ ︷︷ ︸

→3s2
2·0

+2s2

(
2θ − c(s2)

s2
− ∆c

∆s

)
︸ ︷︷ ︸

→2θ− c(s0)
s0

−c′(s0)

]

= 2s0

(
2θ − c(s0)

s0
− c′(s0)

)
=: K2.

Plugged into (C58) this yields

lim
s1,s2→s0

∂Π1(s1, s2)
∂s1

= −K2
1 + 2K1K2 lim

s1,s2→s0
∆s = −K2

1 . (C59)

Analogously for firm 2 we know from (C40) that, if the limit exists,

lim
s1,s2→s0

∂Π2(s1, s2)
∂s2

= lim
s1,s2→s0

β(s1, s2)2 + lim
s1,s2→s0

2β∆s
∂β(s1, s2)

∂s2
, (C60)

with

lim
s1,s2→s0

β(s1, s2) = 1
3

(
2θ − c(s0)

s0
− c′(s0)

)
=: K3,

lim
s1,s2→s0

∂β(s1, s2)
∂s2

= lim
s1,s2→s0

[
(s2 + ∆s)(3s2 + ∆s)

∆s

(
∆c

∆s
− c′(s2)

)
︸ ︷︷ ︸

→3s2
2·0

+2s1

(
2c(s1)

s1
− θ − ∆c

∆s

)
︸ ︷︷ ︸

→2 c(s0)
s0

−θ−c′(s0)

]

= 2s0

(
2c(s0)

s0
− θ − c′(s0)

)
=: K4.

Plugged into (C60) this yields

lim
s1,s2→s0

∂Π2(s1, s2)
∂s2

= K2
3 + 2K3K4 lim

s1,s2→s0
∆s = K2

3 , (C61)

which concludes the proof.

□
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C7 Proof of Proposition 15
The proposition is a direct consequence of the following claim.

Claim. ∂Π1/∂s1 can be bounded from below as follows

∂Π1(s1, s2)
∂s1

≥ s2

s1

α

(3s2 + ∆s)2︸ ︷︷ ︸
>0

[
(3s2 + ∆s)︸ ︷︷ ︸

>0

K + s1∆s

(
2θ − c(s2)

s2
− ∆c

∆s

)
︸ ︷︷ ︸

>0

]
(C62)

with K as defined in the proposition.

Proof of claim. For the lower bound of ∂Π1/∂s1, we start with (C49) to obtain

∂Π1(s1, s2)
∂s1

(C49)= s2

s1

α

(3s2 + ∆s)2

[
2∆s(3s2 + ∆s)

(
∆c

∆s
− c′(s1)

)

+s2(3s2 + ∆s)
(

2c(s1)
s1

− θ − c′(s1)
)

+s2(3s2 + ∆s)
(

2θ − c(s2)
s2

− c′(s1)
)

− 3s1s2

(
2θ − c(s2)

s2
− ∆c

∆s

)]

= s2

s1

α

(3s2 + ∆s)2

[
2∆s(3s2 + ∆s)

(
∆c

∆s
− c′(s1)

)
(C63)

+s2(3s2 + ∆s)
(

2c(s1)
s1

− θ − c′(s1)
)

+s2(3s2 + ∆s)
(

2θ − c(s2)
s2

− c′(s1)
)

−(3s2 + ∆s)
(

2θ − c(s2)
s2

− ∆c

∆s

)
+ s1∆s

(
2θ − c(s2)

s2
− ∆c

∆s

)]

= s2

s1

α

(3s2 + ∆s)2

[
(3s2 + ∆s)K + s1∆s

(
2θ − c(s2)

s2
− ∆c

∆s

)]
(C64)

with

K = θ(s2 − 2s1) + c(s2)
(

s1

s2
− 1

)
+ 2s2

s1
c(s1) − 2(s2 + ∆s)c′(s1) + ∆c

(
2 + s1

∆s

)
(C65)

= θ(s2 − 2s1) − 2(s2 + ∆s)c′(s1) (C66)

+ 1
s2∆s

[
c(s2)

(
s2

2 − s2
1 + s1s2

)
+ c(s1)

(
2s3

2
s1

− 4s2
2 + s1s2

)]
= θ(s2 − 2s1) − 2(s2 + ∆s)c′(s1) (C67)

+ 1
s2∆s

[
s2

2

(
c(s2) + 2c(s1)

(
s2

s1
− 2

))
︸ ︷︷ ︸
≥c(s1)

[
1+2 s2

s1
−4
]

=c(s1)
[

2∆s−s1
s1

]
+c(s2)s1∆s + c(s1)s1s2

]
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≥ θ(s2 − 2s1) − 2(s2 + ∆s)c′(s1) (C68)

+ 1
s2∆s

[
c(s1)

s2
2

s1
(2∆s) + c(s2)s1∆s + c(s1)(−s2∆s)

]

= θ(s2 − 2s1) + 2s2

(
c(s1)

s1
− c′(s1)

)
− 2c′(s1)∆s + 1

s2
(c(s2)s1 − c(s1)s2)︸ ︷︷ ︸

=c(s2)s1−c(s1)s1+c(s1)s1−c(s1)s2

(C69)

= θ(s2 − 2s1) + 2s2

(
c(s1)

s1
− c′(s1)

)
− 2c′(s1)∆s + s1∆s

s2

(
∆c

∆s
− c(s1)

s1

)
(C70)

= θ(s2 − 2s1) +
(

2s2 − ∆s
s1

s2

) [
c(s1)

s1
− c′(s1)

]
+ ∆s

s1

s2

[
∆c

∆s
− c′(s1)

]
+ 2∆s (−c′(s1)) .

□

C8 Proof of Proposition 16
It remains to derive the profitable deviation s3 = (s2

2 + s1s2 − s2
1)/s2. To that end, let s3 be

some quality choice with s2 < s3 ≤ s. Then with ∆ijs := (sj − si) and ∆ijc := c(sj) − c(si)
the following inequalities are equivalent

Π2(s2, s3) > Π1(s1, s2) (C71)
⇔ ∆23sβ(s2, s3)2 > ∆12s

s2

s1
α(s1, s2)2

⇔ ∆23s

[
s3

3s3 + ∆23s

(
2θ − c(s3)

s3
− ∆23c

∆23s

)]2

> ∆12s
s2

s1

[
s1

3s2 + ∆12s

(
∆12c

∆12s
− 2c(s1)

s1
+ θ

)]2

⇔
(

∆23s

∆12s

)(
s1

s2

)(
s2

3
s2

1

)
(3s2 + ∆12s)2

(3s3 + ∆23s)2 >

 c(s2)−c(s1)
∆12s

− 2 c(s1)
s1

+ θ

2θ − c(s3)
s3

− c(s3)−c(s2)
∆23s

2

(C72)

with α and β for si < sj as defined in (C36) and (C37) at the beginning of Appendix C6.
Suppose we can choose s3 in the admissible interval such that

(s3 − s2)
(s2 − s1)

= s1

s2
(C73)

⇔ s3 = s2
2 + s1s2 − s2

1
s2

. (C74)

With s1/s2 ≤ s3/s2 and this particular choice of s3 we have

(s3 − s2) ≤ s3

s2
(s2 − s1), (C75)

which implies

3s2 + (s2 − s1)
3s3 + (s3 − s2)

≥ s2

s3
. (C76)
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Hence, for this specific choice of s3, the LHS of (C72) reads
(

s1

s2

)(
s1

s2

)(
s2

3
s2

1

)
(3s2 + ∆12s)2

(3s3 + ∆23s)2 ≥
(

s2
3

s2
2

)(
s2

2
s2

3

)
= 1, (C77)

while we know that the RHS of (C72) is smaller than 1 if and only if

2θ − c(s3)
s3

− c(s3) − c(s2)
(s3 − s2)

>
c(s2) − c(s1)

(s2 − s1)
− 2c(s1)

s1
+ θ. (C78)

But (C78) holds, since from (B4’) we know

2θ − c(s3)
s3

− c′(s3) > c′(s3) − 2c(s1)
s1

+ θ

⇔ 2θ − c(s3)
s3

− ∆23c

(s3 − s2)
+ 2c(s1)

s1
− θ − ∆12c

(s2 − s1)
> c′(s3) − ∆23c

(s3 − s2)︸ ︷︷ ︸
>0

+ c′(s3) − ∆12c

(s2 − s1)︸ ︷︷ ︸
>0

.

Hence, (C72) holds and this particular choice of s3 is in fact a profitable deviation. When
is this choice of s3 infeasible? Suppose s2 < s. For s3 = s2 the LSH of (C73) is zero. As s3
increases, the expression on the LHS increases. Hence, either (C73) holds for some s3 - in
which case we have found a profitable deviation - or (s − s2) < s1/s2(s2 − s1). This deviation
is infeasible if

(s − s2) <
s1

s2
(s2 − s1) = s1

s2

(
1 − s1

s2

)
s2, (C79)

which, since the RHS is smaller equal than s2/4, holds if

4
5s < s2. (C80)

□
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